Numerical assessment of the effect of xenopericardial bioprosthetic heart valve calcifications on its biomechanics
https://doi.org/10.15825/1995-1191-2024-4-201-211
Abstract
Objective: to conduct a pilot study of the effect of bioprosthetic heart valve leaflet calcification on biomechanics and to identify the «stress in the material – dysfunction» relationship.
Materials and methods. The study’s focus was on two commercially available UniLine bioprosthetic mitral valves sized 26 and 30 (NeoCor, Russia). The samples were subjected to microcomputer tomographic scanning in order to reconstruct calcium volumes. The resulting 3D models were correlated with prostheses of corresponding sizes and projected to the volume of the locking element in the Abaqus/CAE engineering analysis software (Dassault Systemes, France).
Results. According to numerical modeling, the maximum principal stresses increased significantly to 90.8 MPa in the samples, the opening decreased qualitatively, and impact on the prosthetic frame increased. Comparison of stress diagrams of numerical simulation with samples demonstrates the relationship between peak amplitude and rupture and thinning localizations in the flap apparatus.
Conclusion. The work presented demonstrated the findings of a pilot study of the connection between biomechanics in a patient-specific calcified mitral prosthetic heart valve UniLine and macroscopic characterization of explanted samples. The comparative stage showed that stress values correlate with localization of leaflet dysfunction.
About the Authors
P. S. OnishchenkoRussian Federation
Pavel Onishchenko
6, Barbarash boulevard, Kemerovo, 650002
K. Yu. Klyshnikov
Russian Federation
Kemerovo
A. A. Khromov
Russian Federation
Kemerovo
A. E. Kostyunin
Russian Federation
Kemerovo
T. V. Glushkova
Russian Federation
Kemerovo
T. N. Akentieva
Russian Federation
Kemerovo
E. A. Ovcharenko
Russian Federation
Kemerovo
References
1. Bokerija LA, Milievskaja EB, Kudzoeva ZF, Prjanishnikov VV, Skopin AI, Jurlov IA. Serdechno-sosudistaja hirurgija – 2018. Bolezni i vrozhdennye anomalii sistemy krovoobrashhenija. 1st ed. Moskva: FGBU «NMICSSH im. A.N. Bakuleva» MZ RF; 2018. 270.
2. Bonow RO, O’Gara PT, Adams DH, Badhwar V, Bavaria JE, Elmariah S, et al. 2020 Focused Update of the 2017 ACC Expert Consensus Decision Pathway on the Management of Mitral Regurgitation: A Report of the American College of Cardiology Solution Set Oversight Committee. J Am Coll Cardiol [Internet]. 2020 May 5 [cited 2023 May 26];75(17):2236–70. Available from: https://pubmed.ncbi.nlm.nih.gov/32068084/
3. Nishimura RA, Otto CM, Bonow RO, Carabello BA, Erwin JP, Fleisher LA, et al. 2017 AHA/ACC Focused Update of the 2014 AHA/ACC Guideline for the Management of Patients with Valvular Heart Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation [Internet]. 2017 Jun 20 [cited 2023 May 26];135(25):e1159–95. Available from: https://www.ahajournals.org/doi/abs/10.1161/CIR.0000000000000503
4. Marom G, Einav S. New insights into valve hemodynamics. Rambam Maimonides Med J. 2020;11(2). DOI:10.5041/RMMJ.10400
5. Velho TR, Pereira RM, Fernandes F, Guerra NC, Ferreira R, Nobre Â. Bioprosthetic Aortic Valve Degeneration: a Review from a Basic Science Perspective. Brazilian J Cardiovasc Surg. 2022;37(2):239–50. DOI:10.21470/1678-9741-2020-0635
6. Brockbank KGM, Song YC. Mechanisms of bioprosthetic heart valve calcification. Transplantation. 2003;75(8):1133–5. DOI:10.1097/01.TP.0000062864.54455.E5
7. Scott Rapoport H, Connolly JM, Fulmer J, Dai N, Murti BH, Gorman RC, et al. Mechanisms of the in vivo inhibition of calcification of bioprosthetic porcine aortic valve cusps and aortic wall with triglycidylamine/mercapto bisphosphonate. Biomaterials. 2007;28(4):690–9. DOI:10.1016/j.biomaterials.2006.09.029
8. Wen S, Zhou Y, Yim WY, Wang S, Xu L, Shi J, et al. Mechanisms and Drug Therapies of Bioprosthetic Heart Valve Calcification. Front Pharmacol. 2022;13. DOI:10.3389/fphar.2022.909801
9. Timchenko TP. Bisphosphonates as Potential Inhibitors of Calcification in Bioprosthetic Heart Valves (Review). Sovrem Tehnol v Med. 2022;14(2):68–79. DOI:10.17691/stm2022.14.2.07
10. Alwan L, Bernhard B, Brugger N, de Marchi SF, Praz F, Windecker S, et al. Imaging of Bioprosthetic Valve Dysfunction after Transcatheter Aortic Valve Implantation. Diagnostics. 2023;13(11). DOI:10.3390/diagnostics13111908
11. Piérard S, Seldrum S, Muller T, Gerber BL. Evaluation of aortic bioprosthesis stenosis by multidetector ct. J Cardiovasc Comput Tomogr. 2012;6(1):62–5. DOI:10.1016/j.jcct.2011.11.005
12. Cartlidge TRG, Doris MK, Sellers SL, Pawade TA, White AC, Pessotto R, et al. Detection and Prediction of Bioprosthetic Aortic Valve Degeneration. J Am Coll Cardiol. 2019;73(10):1107–19. DOI:10.1016/j.jacc.2018.12.056
13. Lepidi H, Casalta JP, Fournier PE, Habib G, Collart F, Raoult D. Quantitative histological examination of mechanical heart valves. Clin Infect Dis. 2005;40(5):655–61. DOI:10.1086/427504
14. Sellers SL, Turner CT, Sathananthan J, Cartlidge TRG, Sin F, Bouchareb R, et al. Transcatheter Aortic Heart Valves: Histological Analysis Providing Insight to Leaflet Thickening and Structural Valve Degeneration. JACC Cardiovasc Imaging. 2019;12(1):135–45. DOI:10.1016/j.jcmg.2018.06.028
15. Lepidi H, Casalta JP, Fournier PE, Habib G, Collart F, Raoult D. Quantitative histological examination of bioprosthetic heart valves. Clin Infect Dis. 2006;42(5):590–6. DOI:10.1086/500135
16. Prokudina ES, Senokosova EA, Antonova LV, Muhamadijarov RA, Koshelev VA, Krivkina EO, et al. Morphological features of biological and tissue-engineered vascular patches remodeling: results of tests on a sheep model. The Siberian Journal of Clinical and Experimental Medicine – The Siberian Journal of Clinical and Experimental Medicine. 2023;38(4):250–9. [In Russ., English abstact] DOI:10.29001/2073-8552-2023-38-4-250-259
17. Bogdanov LA, Velikanova EA, Shishkova DK, Shabaev AR, Kutikhin AG. Neointimal remodeling in carotid atherosclerosis: roles of matrix metalloproteinases-2 and -9 and different phenotypes of vascular smooth muscle cells. Patologicheskaya Fiziologiya i Eksperimental’naya Terapiya (Pathological physiology and experimental therapy). 2020;(4):20–30. [In Russ, English abstract] DOI:10.25557/0031-2991.2020.04.20-30
18. Human P, Bezuidenhout D, Aikawa E, Zilla P. Residual Bioprosthetic Valve Immunogenicity: Forgotten, Not Lost. Front Cardiovasc Med. 2021;8. DOI:10.3389/fcvm.2021.760635
19. Marro M, Kossar AP, Xue Y, Frasca A, Levy RJ, Ferrari G. Noncalcific mechanisms of bioprosthetic structural valve degeneration. J Am Heart Assoc. 2021;10(3):1–13. DOI:10.1161/JAHA.120.018921
20. Shishkova DK, Glushkova TV, Efimova OS, Popova AN, Malysheva VY, Kolmykov RP, et al. Morphological and Chemical Properties of Spherical and Needle Calcium Phosphate Bions. Complex Issues Cardiovasc Dis. 2019;8(1):59–69. DOI:10.17802/2306-1278-2019-8-1-59-69
21. Abramov A, Xue Y, Zakharchenko A, Kurade M, Soni RK, Levy RJ, et al. Bioprosthetic heart valve structural degeneration associated with metabolic syndrome: Mitigation with polyoxazoline modification. Proc Natl Acad Sci U S A. 2023;120(1). DOI:10.1073/pnas.2219054120
22. Smart I, Goecke T, Ramm R, Petersen B, Lenz D, Haverich A, et al. Dot blots of solubilized extracellular matrix allow quantification of human antibodies bound to epitopes present in decellularized porcine pulmonary heart valves. Xenotransplantation. 2021;28(1). DOI:10.1111/xen.12646
23. Asanov MA, Kazachek Y V., Evtushenko A V., Teplova YE, Ponasenko A V. Comparison of Microflora Isolated From Peripheral Blood and Valvular Structures of the Heart in Patients With Infective Endocarditis. Acta Biomed Sci. 2022;7(2):91–8. DOI:10.29413/ABS.2022-7.2.10
24. Mohammadi MM, Bavi O. DNA sequencing: an overview of solid-state and biological nanopore-based methods. Biophys Rev. 2022;14(1):99–110. DOI:10.1007/s12551-021-00857-y
25. Rovery C, Greub G, Lepidi H, Casalta JP, Habib G, Collart F, et al. PCR detection of bacteria on cardiac valves of patients with treated bacterial endocarditis. J Clin Microbiol. 2005;43(1):163–7. DOI:10.1128/JCM.43.1.163-167.2005
26. Mukhamadiyarov RA, Bogdanov LA, Glushkova T V., Shishkova DK, Kostyunin AE, Koshelev VA, et al. Embedding and backscattered scanning electron microscopy: A detailed protocol for the whole-specimen, high-resolution analysis of cardiovascular tissues. Front Cardiovasc Med. 2021;8. DOI:10.3389/fcvm.2021.739549
27. Keklikoglou K, Arvanitidis C, Chatzigeorgiou G, Chatzinikolaou E, Karagiannidis E, Koletsa T, et al. Micro‐ct for biological and biomedical studies: A comparison of imaging techniques. J Imaging. 2021;7(9). DOI:10.3390/jimaging7090172
28. Hamid MS, Sabbah HN, Stein PD. Vibrational analysis of bioprosthetic heart valve leaflets using numerical models: Effects of leaflet stiffening, calcification, and perforation. Circ Res. 1987;61(5):687–94. DOI:10.1161/01.RES.61.5.687
29. Claiborne TE, Sheriff J, Kuetting M, Steinseifer U, Slepian MJ, Bluestein D. In vitro evaluation of a novel hemodynamically optimized trileaflet polymeric prosthetic heart valve. J Biomech Eng. 2013;135(2). DOI:10.1115/1.4023235
30. Claiborne TE, Xenos M, Sheriff J, Chiu WC, Soares J, Alemu Y, et al. Toward optimization of a novel trileaflet polymeric prosthetic heart valve via device thrombogenicity emulation. ASAIO J. 2013;59(3):275–83. DOI:10.1097/MAT.0b013e31828e4d80
31. Xuan Y, Dvir D, Wang Z, Mizoguchi T, Ye J, Guccione JM, et al. Stent and leaflet stresses in 26-mm, third-generation, balloon-expandable transcatheter aortic valve. J Thorac Cardiovasc Surg. 2019;157(2):528–36. DOI:10.1016/j.jtcvs.2018.04.115
32. Qin T, Caballero A, Mao W, Barrett B, Kamioka N, Lerakis S, et al. The role of stress concentration in calcified bicuspid aortic valve. J R Soc Interface. 2020;17(167). DOI:10.1098/rsif.2019.0893
33. Kazik HB, Kandail HS, LaDisa JF, Lincoln J. Molecular and Mechanical Mechanisms of Calcification Pathology Induced by Bicuspid Aortic Valve Abnormalities. Front Cardiovasc Med. 2021;8. DOI:10.3389/fcvm.2021.677977
34. Sturla F, Ronzoni M, Vitali M, Dimasi A, Vismara R, Preston-Maher G, et al. Impact of different aortic valve calcification patterns on the outcome of transcatheter aortic valve implantation: A finite element study. J Biomech. 2016;49(12):2520–30. DOI:10.1016/j.jbiomech.2016.03.036
35. Weinberg EJ, Schoen FJ, Mofrad MRK. A computational model of aging and calcification in the aortic heart valve. PLoS One. 2009;4(6). DOI:10.1371/journal.pone.0005960
36. Thubrikar MJ, Deck JD, Aouad J, Nolan SP. Role of mechanical stress in calcification of aortic bioprosthetic valves. J Thorac Cardiovasc Surg. 1983;86(1):115–25. DOI:10.1016/s0022-5223(19)39217-7
37. van der Valk DC, Fomina A, Uiterwijk M, Hooijmans CR, Akiva A, Kluin J, et al. Calcification in Pulmonary Heart Valve Tissue Engineering: A Systematic Review and Meta-Analysis of Large-Animal Studies. JACC Basic to Transl Sci. 2023;8(5):572–91. DOI:10.1016/j.jacbts.2022.09.009
38. Schoen FJ, Tsao JW, Levy RJ. Calcification of bovine pericardium used in cardiac valve bioprostheses. Am J Pathol. 1986;123:134–45.
39. Sakaue T, Koyama T, Nakamura Y, Okamoto K, Kawashima T, Umeno T, et al. Bioprosthetic Valve Deterioration: Accumulation of Circulating Proteins and Macrophages in the Valve Interstitium. JACC Basic to Transl Sci. 2023;8(7):862–80. DOI:10.1016/j.jacbts.2023.01.003
40. Khalivopulo IK, Evtushenko A V., Shabaldin A V., Troshkinev NM, Stasev AN, Kokorin SG, et al. Comparison of Propensity Scores for Surgical Treatment of Bioprosthetic Mitral Valve Dysfunction Using Traditional and “Valve-in-Valve” Methods. Complex Issues Cardiovasc Dis. 2023;12(2):57–69. DOI:10.17802/2306-1278-2023-12-2-57-69
41. Fedorov SA, Chiginev VA, Zhurko SA, Gamzaev AB, Medvedev AP. Klinicheskie i gemodinamicheskie rezul'taty ispol'zovanija razlichnyh modelej biologicheskih protezov dlja korrekcii senil'nyh porokov aortal'nogo klapana. Modern Technologies in Medicine. 2016;8(4):292–6. (in Russ)
42. Pestiaux C, Pyka G, Quirynen L, De Azevedo D, Vanoverschelde JL, Lengelé B, et al. 3D histopathology of stenotic aortic valve cusps using ex vivo microfocus computed tomography. Front Cardiovasc Med. 2023;10. DOI:10.3389/fcvm.2023.1129990
43. ExxonMobil. Datasheet. 2022 [cited 2023 Jul 19]. p. 2 ExxonMobilTM PP1014H1 Polypropylene Homopolymer. Available from: https://exxonmobilchemical.ulprospector.com/datasheet.aspx
44. Finotello A, Gorla R, Brambilla N, Bedogni F, Auricchio F, Morganti S. Finite element analysis of transcatheter aortic valve implantation: Insights on the modelling of self-expandable devices. J Mech Behav Biomed Mater. 2021;123. DOI:10.1016/j.jmbbm.2021.104772
45. Capelli C, Bosi GM, Cerri E, Nordmeyer J, Odenwald T, Bonhoeffer P, et al. Patient-specific simulations of transcatheter aortic valve stent implantation. Med Biol Eng Comput [Internet]. 2012 Feb [cited 2022 Mar 16];50(2):183–92. Available from: https://pubmed.ncbi.nlm.nih.gov/22286953/
46. Onishchenko P, Glushkova T, Kostyunin A, Rezvova M, Akentyeva T, Barbarash L. Computer models of biomaterials used for manufacture of flap apparatus of prosthetic heart valves. Mater Sci. 2023;0(7):30–9. DOI:10.31044/1684-579x-2023-0-7-30-39
47. Guo S, Shi Y, Zhang H, Meng Q, Su R, Zhang J, et al. Design and fabrication of a Nb/NiTi superelastic composite with high critical stress for inducing martensitic transformation and large recoverable strain for biomedical applications. Mater Sci Eng C. 2020;112. DOI:10.1016/j.msec.2020.110894
Supplementary files
Review
For citations:
Onishchenko P.S., Klyshnikov K.Yu., Khromov A.A., Kostyunin A.E., Glushkova T.V., Akentieva T.N., Ovcharenko E.A. Numerical assessment of the effect of xenopericardial bioprosthetic heart valve calcifications on its biomechanics. Russian Journal of Transplantology and Artificial Organs. 2024;26(4):201-211. https://doi.org/10.15825/1995-1191-2024-4-201-211