Preview

Russian Journal of Transplantology and Artificial Organs

Advanced search

Effect of prolonged cardiac graft preservation on adhesion protein activation and synthetic endothelial function

https://doi.org/10.15825/1995-1191-2024-4-140-148

Abstract

Objective: to conduct a comparative study of the efficacy of Custodiol® cardioplegia (Custodiol HTK, Dr. Franz Köhler Chemie GmbH, Bensheim, Germany) and normothermic autoperfusion of heart graft as a part of an ex vivo cardiopulmonary complex (CPC).

Methods. Landrace pigs weighing 50 ± 5 kg and aged 4–5 months (n = 10) were used as the model for a series of acute experiments. In the experimental group (n = 5), the CPC was conditioned by autoperfusion for 6 hours. In the control group, the heart’s pumping function was restored after a 6-hour cold preservation with Custodiol®. The effectiveness of cardiac graft preservation methods was evaluated by measuring myocardial ischemic markers, endothelial synthetic function, and endothelial cell activation markers (E- and P-selectins, endothelial growth factor).

Results. Following cardiac graft reperfusion, the control group exhibited a statistically significant increase in the concentration of myocardial ischemia markers; also, there was a significant decrease in the synthesis of endothelium-derived relaxing factor in the Custodiol® solution preservation group (378.5 [226.4; 539.7] vs. 542.1 [377.6; 853.2] μM/mL in the autoperfusion group, p < 0.05). The degree of coronary endothelial reperfusion injury/activation was several times higher in the control group than in the normothermic autoperfusion conditioning group. Moreover, cardiac output after a 6-hour graft conditioning was 0.63 [0.37; 0.80] and 0.37 [0.23; 0.37] L/min in the experimental and control groups, respectively (p < 0.05).

Conclusion. Normothermic autoperfusion showed a significant advantage in preserving the morphofunctional status of the donor heart compared with cold preservation with Custodiol® during 6 hours of ex vivo graft conditioning.

About the Authors

М. O. Zhulkov
Meshalkin National Medical Research Center
Russian Federation

Novosibirsk



N. A. Karmadonova
Meshalkin National Medical Research Center
Russian Federation

Novosibirsk



M. A. Surovtseva
Meshalkin National Medical Research Center; Research Institute of Clinical and Experimental Lymphology

Novosibirsk



I. I. Kim
Meshalkin National Medical Research Center; Research Institute of Clinical and Experimental Lymphology

Novosibirsk



O. V. Poveshchenko
Meshalkin National Medical Research Center; Research Institute of Clinical and Experimental Lymphology

Novosibirsk



I. S. Zykov
Meshalkin National Medical Research Center

Novosibirsk



A. R. Tarkova
Meshalkin National Medical Research Center

Novosibirsk



D. A. Sirota
Meshalkin National Medical Research Center; Novosibirsk State Medical University

Novosibirsk



A. V. Protopopov
Meshalkin National Medical Research Center

Novosibirsk



A. G. Makaev
Meshalkin National Medical Research Center
Russian Federation

Alexander Makaev.

15, Rechkunovskaya str., Novosibirsk, 630055

Phone: (905) 198-33-31



F. Yu. Kosimov
Meshalkin National Medical Research Center

Novosibirsk



M. N. Murtazaliev
Meshalkin National Medical Research Center

Novosibirsk



A. V. Guseva
Meshalkin National Medical Research Center

Novosibirsk



K. A. Agaeva
Meshalkin National Medical Research Center

Novosibirsk



References

1. Hosenpud JD, Bennett LE, Keck BM, Fiol B, Boucek MM, Novick RJ. The Registry of the International Society for Heart and Lung Transplantation: sixteenth official report – 1999. J Heart Lung Transplant. 1999 Jul; 18 (7): 611–626.

2. Stoica SC, Goddard M, Large SR. The endothelium in clinical cardiac transplantation. Ann Thorac Surg. 2002 Mar; 73 (3): 1002–1008.

3. Tsao PS, Aoki N, Lefer DJ, Johnson G 3rd, Lefer AM. Time course of endothelial dysfunction and myocardial injury during myocardial ischemia and reperfusion in the cat. Circulation. 1990 Oct; 82 (4): 1402–1412.

4. Kupatt C, Habazettl H, Zahler S, Weber C, Becker BF, Messmer K, Gerlach E. ACE-inhibition prevents postischemic coronary leukocyte adhesion and leukocyte-dependent reperfusion injury. Cardiovasc Res. 1997 Dec; 36 (3): 386–395.

5. Ma XL, Weyrich AS, Lefer DJ, Lefer AM. Diminished basal nitric oxide release after myocardial ischemia and reperfusion promotes neutrophil adherence to coronary endothelium. Circ Res. 1993 Feb; 72 (2): 403–412.

6. Kubes P, Suzuki M, Granger DN. Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci USA. 1991 Jun 1; 88 (11): 4651–4655.

7. Patel KD, Zimmerman GA, Prescott SM, McEver RP, McIntyre TM. Oxygen radicals induce human endothelial cells to express GMP-140 and bind neutrophils. J Cell Biol. 1991 Feb; 112 (4): 749–759.

8. Boyle EM Jr, Pohlman TH, Cornejo CJ, Verrier ED. Endothelial cell injury in cardiovascular surgery: ischemiareperfusion. Ann Thorac Surg. 1996 Dec; 62 (6): 1868– 1875.

9. Forbess JM, Hiramatsu T, Nomura F, Miura T, Farrington GK, Sokolowski K et al. Anti-CD11b monoclonal antibody improves myocardial function after six hours of hypothermic storage. Ann Thorac Surg. 1995 Nov; 60 (5): 1238–1244.

10. Lefer AM, Tsao PS, Lefer DJ, Ma XL. Role of endothelial dysfunction in the pathogenesis of reperfusion injury after myocardial ischemia. FASEB J. 1991 Apr; 5 (7): 2029–2034.

11. Costanzo MR, Dipchand A, Starling R, Anderson A, Chan M, Desai S et al. The International Society of Heart and Lung Transplantation Guidelines for the care of heart transplant recipients. J Heart Lung Transplant. 2010 Aug; 29 (8): 914–956.

12. Banner NR, Thomas HL, Curnow E, Hussey JC, Rogers CA, Bonser RS et al. The importance of cold and warm cardiac ischemia for survival after heart transplantation. Transplantation. 2008 Aug 27; 86 (4): 542–547.

13. Pettit SJ, Petrie MC. Transplantation of Hearts Donated After Circulatory-Determined Death. Circ Heart Fail. 2019 Apr; 12 (4): e005991.

14. Tarkova AR, Zykov IS, Zhulkov MO, Protopopov AV, Smirnov YaM, Makaev AG et al. Normothermic ex vivo heart and lung autoperfusion: assessment of functional status and metabolism. Russian Journal of Transplantology and Artificial Organs. 2023; 25 (4): 150–159.

15. Zhulkov MO, Tarkova AR, Zykov IS, Makaev AG, Protopopov AV, Murtazaliyev MN et al. Long-term normothermic autoperfusion of the cardiopulmonary complex ex vivo as a method of effective graft conditioning: an experimental study. Circulatory pathology and cardiac surgery. 2023; 27 (4): 33–42.

16. Zhou M, Yu Y, Luo X, Wang J, Lan X, Liu P et al. Myocardial Ischemia-Reperfusion Injury: Therapeutics from a Mitochondria-Centric Perspective. Cardiology. 2021; 146 (6): 781–792.

17. Lasky LA. Selectin-carbohydrate interactions and the initiation of the inflammatory response. Annu Rev Biochem. 1995; 64: 113–139.

18. Cell adhesion molecules: selectins and integrins – PubMed [Electronic resource]. URL: https://pubmed.ncbi.nlm.nih.gov/10647744/ (accessed: 18.01.2024).

19. Koskinen PK, Lemström KB. Adhesion molecule P-selectin and vascular cell adhesion molecule-1 in enhanced heart allograft arteriosclerosis in the rat. Circulation. 1997 Jan 7; 95 (1): 191–196.

20. Weyrich AS, Ma XY, Lefer DJ, Albertine KH, Lefer AM. In vivo neutralization of P-selectin protects feline heart and endothelium in myocardial ischemia and reperfusion injury. J Clin Invest. 1993 Jun; 91 (6): 2620–2629.


Review

For citations:


Zhulkov М.O., Karmadonova N.A., Surovtseva M.A., Kim I.I., Poveshchenko O.V., Zykov I.S., Tarkova A.R., Sirota D.A., Protopopov A.V., Makaev A.G., Kosimov F.Yu., Murtazaliev M.N., Guseva A.V., Agaeva K.A. Effect of prolonged cardiac graft preservation on adhesion protein activation and synthetic endothelial function. Russian Journal of Transplantology and Artificial Organs. 2024;26(4):140-148. https://doi.org/10.15825/1995-1191-2024-4-140-148

Views: 149


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1995-1191 (Print)