Механическая поддержка кровообращения у детей: патофизиология педиатрического гемостаза и алгоритмы послеоперационного ведения
https://doi.org/10.15825/1995-1191-2023-1-90-98
Аннотация
Хроническая сердечная недостаточность на фоне врожденных пороков сердца, преимущественно в раннем детском возрасте, или различных форм кардиомиопатий, чаще встречающихся в подростковом возрасте, представляет собой важную причину заболеваемости и смертности среди детского населения [1, 2]. Ввиду увеличения за последние два десятилетия количества пациентов, страдающих терминальной стадией хронической сердечной недостаточности, рефрактерной к медикаментозной терапии, и существующего дефицита донорских органов в педиатрической практике вопрос о применении длительной механической поддержки кровообращения становится все более актуальным. Ведение пациентов представляет собой мультидисциплинарную задачу, так как длительное применение антикоагулянтной и антитромбоцитарной терапии, направленной на предупреждение тромбоза искусственного желудочка сердца, имеет потенциально опасные, жизнеугрожающие осложнения, а именно острое нарушение мозгового кровообращения по геморрагическому типу и кровотечения различной степени тяжести.
Об авторах
Н. Н. КолосковаРоссия
Колоскова Надежда Николаевна - заведующая отделением кардиологии в ФГБУ НМИЦ ТИО им.ак.В.И.Шумакова МЗ РФ
123182, ул. Щукинская, д. 1. Тел. (926) 651-40-64
Т. А. Халилулин
Россия
Тимур Абдулнаимович Халилулин
Москва
Д. В. Рябцев
Дмитрий Вадимович Рябцев
Москва
В. Н. Попцов
Россия
Виталий Николаевич Попцов
Москва
Список литературы
1. Masarone D, Valente F, Rubino M, Vastarella R, Gra-vino R, Rea A et al. Pediatric Heart Failure: A Practical Guide to Diagnosis and Management. Pediatr Neonatol. 2017; 58 (2): 303-312.
2. Rossano JW, Shaddy RE. Heart failure in children: etiology and treatment. JPediatr. 2014; 165 (2): 228-233.
3. Kreuziger LB, Massicotte MP. Adult and pediatric mechanical circulation: a guide for the hematologist. Hema-tol Am Soc Hematol Educ Program. 2018; 30: 507-515.
4. Owens WR, Bryant R 3rd, Dreyer WJ, Price JF, Morales DL. Initial Clinical Experience With the HeartMate II Ventricular Assist System in a Pediatric Institution. Artif Organs. 2010; 34: 600-603.
5. D’Alessandro D, Forest SJ, Lamour J, Hsu D, Weinstein S, Goldstein D. First reported use of the Heartware HVAD in the US as bridge to transplant in an adolescent. Pediatr Transplantation. 2012; 16: 356-359.
6. Morales DLS, Adachi I, Peng DM, Sinha P, Lorts A, Fields K et al. Fourth Annual Pediatric Interagency Registry for Mechanical Circulatory Support (Pedimacs) Report. Ann Thorac Surg. 2020; 110 (6): 1819-1831.
7. Ekdahl KN, Teramura Y, Hamad OA, Asif S, Duehr-kop C, Fromell K et al. Dangerous liaisons: complement, coagulation, and kallikrein/kinin cross-talk act as a linchpin in the events leading to thromboinflammation. Immunol Rev. 2016; 274 (1): 245-269.
8. Himmelreich G, Ullmann H, Riess H, Rosch R, LoebeM, Schiessler A, Hetzer R. Pathophysiologic role of contact activation in bleeding followed by thromboembolic complications after implantation of a ventricular assist device. ASAIO J. 1995; 41 (3): M790-M794.
9. Jaffer IH, Fredenburgh JC, Hirsh J, Weitz JI. Medical device-induced thrombosis: what causes it and how can we prevent it? J Thromb Haemost. 2015; 13 (suppl 1): S72-S81.
10. Monagle P, Barnes C, Ignjatovic V, Furmedge J, Ne-wall F, Chan A et al. Developmental haemostasis. Impact for clinical haemostasis laboratories. Thromb Haemost. 2006; 95: 362-372.
11. Andrew M, Paes B, Milner R, Johnston M, Mitchell L, Tollefsen DM, Powers P Development of the human coagulation system in the full-term infant. Blood. 1987; 70: 165-172.
12. Andrew M, Paes B, Johnston M. Development of the hemostatic system in the neonate and young infant. Am J Pediatr Hematol Oncol. 1990; 12: 95-104.
13. Williams GD, Bratton SL, Nielsen NJ, Ramamoorthy C. Fibrinolysis in pediatric patients undergoing cardiopulmonary bypass. J Cardiothorac Vasc Anesth. 1998; 12: 633-638.
14. Kreuziger LB, Massicotte MP. Adult and pediatric mechanical circulation: a guide for the hematologist. Hematol Am Soc Hematol Educ Program. 2018; 30: 507-515.
15. Edmunds EL. The blood-surface interface. Gravlee GP, editor. Cardiopulmonary Bypass: Principles and Practice 3 ed. Philadelphia, PA: Lippincott Williams & Wilkins (2008).
16. Kreuziger LB, Massicotte MP. Mechanical circulatory support: balancing bleeding and clotting in high-risk patients. Hematol Am Soc Hematol Educ Program. 2015: 61-68.
17. Rosenthal DN, Almond CS, Jaquiss RD, Peyton CE, Auerbach SR, Morales DR et al. Adverse events in children implanted with ventricular assist devices in the United States: data from the pediatric interagency registry for mechanical circulatory support (PediMACS). J Heart Lung Transplant. 2016; 35: 569-577.
18. Sutor AH, Massicotte P, Leaker M, Andrew M. Heparin therapy in pediatric patients. Semin Thromb Hemost. 1997; 23: 303-319.
19. Severin T, Sutor AH. Heparin-induced thrombocytopenia in pediatrics. Semin Thromb Hemost. 2001; 27: 293-299.
20. Vakil NH, Kanaan AO, Donovan JL. Heparin-Induced Thrombocytopenia in the Pediatric Population: A Review of Current Literature. J Pediatr Pharmacol Ther. 2012; 17 (1): 12-30.
21. Avila L, Amiri N, Yenson P, Khan S, Zavareh ZT, Chan AKC et al. Heparin-Induced Thrombocytopenia in a Pediatric Population: Implications for Clinical Probability Scores and Testing. J Pediatr. 2020; 226: 167-172.
22. Kishimoto TK, Viswanathan K, Ganguly T, Elankuma-ran S, Smith S, Pelzer K et al. Contaminated heparin associated with adverse clinical events and activation of the contact system. N Engl J Med. 2008; 358: 24572467.
23. Bhandari M, Hirsh J, Weitz JI, Young E, Venner TJ, Shaughnessy SG. The effects of standard and low molecular weight heparin on bone nodule formation in vitro. Thromb Haemost. 1998; 80: 413-417.
24. Jones AJ, O’Mara KL, Kelly BJ, Samraj RS. The impact of antithrombin III use in achieving anticoagulant goals in pediatric patients. J Pediatr Pharmacol Ther. 2017; 22: 320-325.
25. Buck ML. Bivalirudin as an alternative to heparin for anticoagulation in infants and children. J Pediatr Pharmacol Ther. 2015; 20: 408-417.
26. Campbell CT, Diaz L, Kelly B. Description of Bivaliru-din Use for Anticoagulation in Pediatric Patients on Mechanical Circulatory Support. Ann Pharmacother. 2021; 55 (1): 59-64.
27. Ghbeis MB, Vander Pluym CJ, Thiagarajan RR. Hemostatic challenges in pediatric critical care medicine - hemostatic balance in VAD. FrontPediatr. 2021; 26: 625632.
28. Steiner ME, Bomgaars LR, Massicotte MP. Berlin heart EXCOR pediatric VAD IDE study investigators antithrombotic therapy in a prospective trial of a pediatric ventricular assist device. ASAIO J. 2016; 62: 719-727.
29. Sylvia LM, Ordway L, Pham DT, DeNofrio D, Kier-nan M. Bivalirudin for treatment of LVAD thrombosis: a case series. ASAIO J. 2014; 60: 744-747.
30. VanderPluym CJ, Cantor RS, Machado D, Boyle G, May L, Griffiths E et al. Utilization and outcomes of children treated with direct thrombin inhibitors on pa-racorporeal ventricular assist device support. ASAIO J. 2020; 66: 939-945.
31. Miera O, Schmitt KL, Akintuerk H, Boet A, Cesnjevar R, Chila T et al. Antithrombotic therapy in pediatric ventricular assist devices: Multicenter survey of the European EXCOR Pediatric Investigator Group. Int JArtif Organs. 2018 Jul; 41 (7): 385-392.
32. Steiner ME, Bomgaars LR, Massicotte MP. Antithrombotic therapy in a prospective trial of a pediatric ventricular assist device. ASAIO J. 2016; 62: 719-27.
33. Peng E, KirkR, Wrightson N, Duong P, Ferguson L, Gri-selli M et al. An extended role of continuous flow device in pediatric mechanical circulatory support. Ann Thorac Surg. 2016; 102: 620-627.
34. Rosenthal DN, Lancaster CA, McElhinney DB, Chen S, Stein M, Lin A et al. Impact of a modified antithrombotic guideline on stroke in children supported with a pediatric ventricular assist device. J Heart Lung Transplant. 2017; 36: 1250-1257.
35. O’Connor MJ, Lorts A, Davies RR, Fynn-Thompson F, Joong A, Maeda K et al. Early experience with the Heart-Mate 3 continuousflow ventricular assist device in pediatric patients and patients with congenital heart disease: A multicenter registry analysis. J Heart Lung Transplant. 2020 Jun; 39 (6): 573-579.
36. Andreas M, Moayedifar R, Wieselthaler G, Wolzt M, Riebandt J, Haberl T et al. Increased thromboembolic events with dabigatran compared with Vitamin K antagonism in left ventricular assist device patients. Circ Heart Fail. 2017; 10 (5): 1-6.
37. Parikh V, Parikh U, Ramirez AM, Lamba H, George J, Fedson S et al. Novel oral anticoagulants in patients with continuous flow left ventricular assist devices. J Heart Lung Transplant. 2019; 38: S425.
38. Schulte-Eistrup S, Mayer-Wingert N, Reiss N, Sinder-mann J, Warnecke H. Apixaban in HVAD patients noncompliant to standard vitamin-k-antagonism. J Heart Lung Transplant. 2019; 38: S68.
39. Li S, Mahr C. Anticoagulation in the HeartMate 3 Left Ventricular Assist Device: Are We Finally Moving the Needle? ASAIO J. 2022; 68 (3): 323-324.
40. Ghbeis MB, Vander Pluym CJ, Thiagarajan RR. Hemostatic Challenges in Pediatric Critical Care Medicine -Hemostatic Balance in VAD. Front Pediatr. 2021; 9: 1-11.
Рецензия
Для цитирования:
Колоскова Н.Н., Халилулин Т.А., Рябцев Д.В., Попцов В.Н. Механическая поддержка кровообращения у детей: патофизиология педиатрического гемостаза и алгоритмы послеоперационного ведения. Вестник трансплантологии и искусственных органов. 2023;25(1):90-98. https://doi.org/10.15825/1995-1191-2023-1-90-98
For citation:
Koloskova N.N., Khalilulin T.A., Ryabtsev D.V., Poptsov V.N. Pediatric mechanical circulatory support: pathophysiology of pediatric hemostasis and postoperative management algorithms. Russian Journal of Transplantology and Artificial Organs. 2023;25(1):90-98. https://doi.org/10.15825/1995-1191-2023-1-90-98