Сoronary paradox
https://doi.org/10.15825/1995-1191-2022-4-145-151
Abstract
This work is a scientific and educational analytical review intended for practicing cardiologists. The purpose of the review is to draw physicians’ attention to the role of myocardial contractility in the regulation of coronary circulation. We consider the fundamental phenomenon of arterial compression (squeezing) in the left ventricular (LV) wall, creating an obstruction to blood flow during cardiac systole. This phenomenon formally resembles functional coronary artery stenosis. Based on a review of the literature, the positive role of arterial compression in coronary hemodynamics is interpreted. Understanding the mechanical relationship between the contractile and coronary systems in the cardiac wall may be useful for practicing physicians when choosing treatment tactics for patients, optimizing LV bypass during heart surgeries, and improving the efficiency of adaptation of the transplanted heart.
About the Authors
V. V. ChestukhinRussian Federation
Moscow
F. A. Blyakhman
Russian Federation
Felix Blyakhman
3, Repina str., Ekaterinburg, 620028, Russian Federation
Phone: (343) 214-86-96
References
1. Scaramucci J. De motu cordis, theorema sextum. Theoremata familiaria de physico-medicis lucubrationibus iucta leges mecanicas. 1695: 70–81.
2. Anrep GV, Cruickshank EW, Downing AC, Subba RA. The coronary circulation in relation to the cardiac cycle. Heart. 1927; 14: 111–133.
3. Gregg DE, Green HD. Registration and interpretation of normal phasic inflow into the left coronary artery by an improved differential manometric method. Am J Physiol. 1940; 130: 114–125.
4. Gregg DE, Sabiston DC. Effect of cardiac contraction on coronary blood flow. Circulation. 1957; 15: 14–20.
5. Westerhof N, Boer C, Lamberts RR, Sipkema P. Crosstalk between cardiac muscle and coronary vasculature. Physiol Rev. 2006; 86: 1263–1308. doi: 10.1152/physrev.00029.2005.
6. Duncer DJ, Koller A, Mercus D, Canty Jr JМ. Regulation of coronary blood flow in health and ischemic heart disease. Progress in Cardiovascular Disease. 2015; 57 (5): 409–422. doi: 10.1016/j.pcad.2014.12.002.
7. Goodwill AG, Dick GM, Kiel AM, Tune JD. Regulation of coronary blood flow. Compr Physiol. 2017; 7: 321–382. doi: 10.1002/cphy.c160016.
8. Duncker DJ. Regulation of Coronary Blood Flow. ETP. https://www.escardio.org/static-file/Escardio/education/live-events/courses/education-resource/101-Duncker.pdf.
9. Murtaza G, Mukherjee D, Gharacholou SM, Nanjundappa A, Lavie CJ, Khan AA et al. An updated review on myocardial bridging. Cardiovascular Revascularization Medicine. 2020; 21 (9): 1169–1179. https://doi.org/10.1016/j.carrev.2020.02.014.
10. Rizzoni D, De Ciuceis C, Salvetti M, Paini A, Rossini C, Agabiti-Rosei C, Muiesan ML. Interactions between macro- and micro-circulation: are they relevant? High Blood Press. Cardiovasc Prev. 2015; 22: 119–128. doi: 10.1007/s40292-015-0086-3.
11. Motwani M, Kidambi A, Uddin A, Sourbron S, Greenwood JP, Plein S. Quantification of myocardial blood with cardiovascular magnetic resonance throughout the cardiac cycle. Journal of Cardiovascular Magnetic Resonance. 2015; 17 (1): 4. doi: 10.1186/s12968-015-0107-3.
12. Kuhl JT, George RT, Merha VC, Lind JJ, Chen M, Arai AE et al. Endocardial – epicardial distribution of myocardial perfusion reserve assessed by multidetector computer tomography in symptomatic patients without significant coronary artery disease: insights from the CORES320 multicentre study. European Heart Journal Cardivascular Imaging. 2016; 17 (7): 779–787. doi: 10.1093/ehjci/jev206.
13. Westerhof N, Sipkema P, Vist M. How cardiac contraction affects the coronary vasculature. Adv Exp Med Biol. 1997; 430: 111–121. doi: 10.1007/978-1-4615-5959-7_10.
14. Downey JM, Kirk ES. Inhibition of coronary blood flow by a vascular waterfall mechanism. Circ Res. 1975; 36: 753–760. doi: 10.1161/01.res.36.6.753.
15. Spaan JA, Breuls NP, Laird JD. Diastolic-systolic coronary flow differences are caused by intramyocardial pump action in the anesthetized dog. Circ Res. 1981; 49: 584–593. doi: 10.1161/01.res.49.3.584.
16. Spaan JA, Breuls NP, Laird JD. Forward coronary flow normally seen in systole is the result of both forward and concealed back flow. Basic Res Cardiol. 1981; 76: 582–586. doi: 10.1007/BF01908365.
17. Krams R, van Haelst AC, Sipkema P, Westerhof N. Сan coronary systolic-diastolic flow differences be predicted by left ventricular pressure or time-varying intramyocardial elastanse? Basic Res Cardiol. 1989; 84: 149–159. doi: 10.1007/BF01907924.
18. Van Winkle DM, Swafford Jr AN, Downey JM. Subendocardial coronary compression in beating dog hearts is independent of pressure in the ventricular lumen. Am J Physiol Heart Circ Physiol. 1991; 261 (2 Pt 2): H500–H505. doi: 10.1152/ajpheart.1991.261.2.H500.
19. Suga H, Sagawa K, Shoukas AA. Load independence of the instantaneous pressure-volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio. Circ Res. 1973; 32: 314–322. https://doi.org/10.1161/01.res.32.3.314.
20. Krams R, Sipkema P, Zegers J, Westerhof N. Contractility is the main determinant of coronary systolic flow impediment. Am J Physiol Heart Circ Physiol. 1989; 257: H1936–H1944. https://doi.org/10.1152/ajpheart.1989.257.6.H1936.
21. Willemsen MJ, Duncker DJ, Krams R, Dijkman MA, Lamberts RR, Sipkema P, Westerhof N. Decrease in coronary vasculare volume in systole augments cardiac contraction. Am J Physiol Heart Circ Physiol. 2001; 281: 731–737. doi: 10.1152/ajpheart.2001.281.2.H731.
22. Fibich G, Lanir Y, Liron N, Abovsky M. Modeling of coronary capillary flow. Adv Exp Ved Biol. 1993; 346: 137–150. doi: 10.1007/978-1-4615-2946-0_13.
23. Chilian WM, Eastham CL, Marcus ML. Microvascular distribution of coronary vascular resistance in beating left ventricle. Am J Physiol. 1986; 251 (4): H779–H788. https://doi.org/10.1152/ajpheart.1986.251.4.H779.
24. Starodumov IO, Sokolov SY, Alexandrov DV, Zubarev AY, Bessonov IS, Chestukhin VV, Blyakhman FA. Modelling of hemodynamics in bifurcation lesions of coronary arteries before and after myocardial revascularization. Phil Trans R Soc A. 2022; 380: 20200303. https://doi.org/10.1098/rsta.2020.0303.
25. Forte E, Punzo B, Gentile F, Salvatore M, Cavaliere C, Cademartiri F. Normal patterns of left ventricle rest myocardial perfusion assessed by third-generation cardiac computed tomography. Clin Physiol Funct Imaging, 2020; 40: 30–36. doi: 10.1111/cpf.12598.
26. Namani R, Lee LC, Lanir Y, Kaimovitz B, Shavik SM, Kassab GS. Effects of myocardial function and systemic circulation on regional coronary perfusion. J Appl Physiol. 2020; 128: 1106–1122. doi: 10.1152/japplphysiol.00450.2019.
27. Davies JE, Whinnett ZI, Francis DP, Manisty CH, Aguado-Sierra J, Willson K et al. Evidence of a dominant backward-propagating «Suction» wave responsible for diastolic coronary filling in humans, attenuated in left ventricular hypertrophy. Circulation. 2006; 113: 1768–1778. https://doi.org/10.1161/circulationaha.105.603050.
28. Ladwiniec A, White PA, Sukhjinder S. Diastolic backward-traveling decompression (Suction) wave correlates with simultaneously acquired indices of diastolic function and is reduced in left ventricular stunning. Circ Cardiovasc Interv. 2016; 9 (9): 1–9. doi: 10.1161/circinterventions.116.003779.
29. Sabbah HN, Marzzilli M, Liu ZL, Stein PD. Coronary extravascular compression influence systolic coronary blood flow. Heart Vessels. 1986; 2: 140–146. doi: 10.1007/BF02128139.
30. Jacob M, Chahhell D, Becker BF. Regulation of blood flow and volume exchange across the microcirculation. Crit Care. 2016; 20 (1): 319. https://doi.org/10.1186/s13054-016-1485-0.
31. Schubert T, Santini F, Stalder AF, Bock J, Meckel S, Bonati L et al. Dampening of blood-flow pulsatility along the carotid siphon: does form follow function? AJNR Am J Neuroradiol. 2011; 32 (6): 1107–1112. doi: 10.3174/ajnr.A2426.
32. Blyakhman F. Left ventricular inhomogeneity and the heart’s functional reserve. The cardiac pumping and perfusion engineering. Ghista D, Ng E, eds. Singapore: World Scientific Press, 2007: 17–56. doi: 10.1142/9789812775597_0002.
Supplementary files
Review
For citations:
Chestukhin V.V., Blyakhman F.A. Сoronary paradox. Russian Journal of Transplantology and Artificial Organs. 2022;24(4):145-151. https://doi.org/10.15825/1995-1191-2022-4-145-151