Preview

Вестник трансплантологии и искусственных органов

Расширенный поиск

Биомаркеры фиброза трансплантированной почки

https://doi.org/10.15825/1995-1191-2022-3-94-101

Аннотация

Фиброз является одной из причин потери аллотрансплантата почки, особенно в поздние сроки после трансплантации (частота встречаемости – до 65% через 2 года). Целью данного обзора литературы является анализ исследований, изучающих методы неинвазивного мониторинга развития фиброза почечного трансплантата.

Об авторах

О. Р. Быстрова
ФГБУ «Национальный медицинский исследовательский центр трансплантологии и искусственных органов имени академика В.И. Шумакова» Минздрава России
Россия

Быстрова Ольга Романовна

Адрес: 123182, Москва, ул. Щукинская, д. 1
Тел. (963) 757-08-91



Е. А. Стаханова
ФГБУ «Национальный медицинский исследовательский центр трансплантологии и искусственных органов имени академика В.И. Шумакова» Минздрава России
Россия

Москва



М. И. Ильчук
ФГБУ «Национальный медицинский исследовательский центр трансплантологии и искусственных органов имени академика В.И. Шумакова» Минздрава России
Россия

Москва



А. А. Улыбышева
ФГБУ «Национальный медицинский исследовательский центр трансплантологии и искусственных органов имени академика В.И. Шумакова» Минздрава России
Россия

Москва



О. Е. Гичкун
ФГБУ «Национальный медицинский исследовательский центр трансплантологии и искусственных органов имени академика В.И. Шумакова» Минздрава России; ФГАОУ ВО Первый Московский государственный медицинский университет имени И.М. Сеченова Минздрава России (Сеченовский университет)
Россия

Москва



Д. А. Сайдулаев
ФГБУ «Национальный медицинский исследовательский центр трансплантологии и искусственных органов имени академика В.И. Шумакова» Минздрава России
Россия

Москва



О. П. Шевченко
ФГБУ «Национальный медицинский исследовательский центр трансплантологии и искусственных органов имени академика В.И. Шумакова» Минздрава России; ФГАОУ ВО Первый Московский государственный медицинский университет имени И.М. Сеченова Минздрава России (Сеченовский университет)
Россия

Москва



Список литературы

1. Nankivell BJ, Borrows RJ, Fung CL, O’Connell PJ, Chapman JR, Allen RD. Delta analysis of posttransplantation tubulointerstitial damage. Transplantation. 2004; 78 (3): 434–441.

2. Stolyarevich ES, Tomilina NA. Understanding evolution on the causes of late renal allograft dysfunction. Russian Journal of Transplantology and Artificial Organs. 2015; 17 (2): 113–115.

3. Granata S, Benedetti C, Gambaro G, Zaza G. Kidney allograft fibrosis: what we learned from latest translational research studies. Journal of Nephrology. 2020; 33 (6): 1201–1211.

4. Boor P, Floege J. Renal allograft fibrosis: Biology and therapeutic targets. American Journal of Transplantation. 2015; 15 (4): 863–886.

5. Saritas T, Kramann R. Kidney Allograft Fibrosis: Diagnostic and Therapeutic Strategies. Transplantation. 2021; 105 (10): e114–e130.

6. Mannon RB, Matas AJ, Grande J, Leduc R, Connett J, Kasiske B et al. Inflammation in areas of tubular atrophy in kidney allograft biopsies: a potent predictor of allograft failure. Am J Transplant. 2010; 10 (9): 2066–2073.

7. Modena BD, Kurian SM, Gaber LW, Waalen J, Su AI, Gelbart T et al. Gene Expression in Biopsies of Acute Rejection and Interstitial Fibrosis/Tubular Atrophy Reveals Highly Shared Mechanisms That Correlate With Worse Long-Term Outcomes. Am J Transplant. 2016; 16 (7): 1982–1998.

8. Shao DD, Suresh R, Vakil V, Gomer RH, Pilling D. Pivotal Advance: Th-1 cytokines inhibit, and Th-2 cytokines promote fibrocyte differentiation. J Leukoc Biol. 2008; 83 (6): 1323–1333.

9. Bontha SV, Maluf DG, Archer KJ, Dumur CI, Dozmorov MG, King AL et al. Effects of DNA Methylation on Progression to Interstitial Fibrosis and Tubular Atrophy in Renal Allograft Biopsies: A Multi-Omics Approach. Am J Transplant. 2017; 17 (12): 3060–3075.

10. Lipphardt M, Song JW, Matsumoto K, Dadafarin S, Dihazi H, Muller G, Goligorsky MS. The third path of tubulointerstitial fibrosis: aberrant endothelial secretome. Kidney Int. 2017; 92 (3): 558–568.

11. Melk A, Schmidt BM, Vongwiwatana A, Rayner DC, Halloran PF. Increased expression of senescence-associated cell cycle inhibitor p16INK4a in deteriorating renal transplants and diseased native kidney. Am J Transplant. 2005; 5 (6): 1375–1382.

12. Rosenberger C, Eckardt KU. Oxygenation of the Transplanted Kidney. Semin Nephrol. 2019; 39 (6): 554–566.

13. Land W, Schneeberger H, Schleibner S, Illner WD, Abendroth D, Rutili G et al. The beneficial effect of human recombinant superoxide dismutase on acute and chronic rejection events in recipients of cadaveric renal transplants. Transplantation. 1994; 57 (2): 211–217.

14. Sun YB, Qu X, Caruana G, Li J. The origin of renal fibroblasts/ myofibroblasts and the signals that trigger fibrosis. Differentiation. 2016; 92 (3): 102–107.

15. Nikolic-Paterson DJ, Wang S, Lan HY. Macrophages promote renal fibrosis through direct and indirect mechanisms. Kidney Int Suppl. 2014; 4 (1): 34–38.

16. Тoki D, Zhang W, Hor KL, Liuwantara D, Alexander SI, Yi Z et al. The role of macrophages in the development of human renal allograft fibrosis in the first year after transplantation. Am J Transplant. 2014; 14 (9): 2126–2136.

17. Armulik A, Abramsson A, Betsholtz C. Endothelial/pericyte interactions. Circ Res. 2005; 97 (6): 512–523.

18. Goodall KJ, Poon IK, Phipps S, Hulett MD. Soluble heparan sulfate fragments generated by heparanase trigger the release of pro-inflammatory cytokines through TLR-4. PLoS One. 2014; 9 (10): e109596.

19. Kramann R, Schneider RK, DiRocco DP, Machado F, Fleig S, Bondzie PA et al. Perivascular Gli1+ progenitors are key contributors to injury-induced organ fibrosis. Cell Stem Cell. 2015; 16 (1): 51–66.

20. Quaglia M, Merlotti G, Guglielmetti G, Castellano G, Cantaluppi V. Recent Advances on Biomarkers of Early and Late Kidney Graft Dysfunction. Int J Mol Sci. 2020; 21 (15): 5404.

21. Sotomayor CG, Te Velde-Keyzer CA, Diepstra A, van Londen M, Pol RA, Post A et al. Galectin-3 and Risk of Late Graft Failure in Kidney Transplant Recipients: A 10-year Prospective Cohort Study. Transplantation. 2021; 105 (5): 1106–1115.

22. Djamali A. Oxidative stress as a common pathway to chronic tubulointerstitial injury in kidney allografts. Am J Physiol Renal Physiol. 2007; 293 (2): F445–455.

23. Gottmann U, Oltersdorf J, Schaub M, Knoll T, Back WE, van der Woude FJ et al. Oxidative stress in chronic renal allograft nephropathy in rats: effects of long-term treatment with carvedilol, BM 91.0228, or alpha-tocopherol. J Cardiovasc Pharmacol. 2003; 42 (3): 442–450.

24. Celie JW, Rutjes NW, Keuning ED, Soininen R, Heljasvaara R, Pihlajaniemi T et al. Subendothelial heparan sulfate proteoglycans become major L-selectin and monocyte chemoattractant protein-1 ligands upon renal ischemia/reperfusion. Am J Pathol. 2007; 170 (6): 1865–1878.

25. Carew RM, Wang B, Kantharidis P. The role of EMT in renal fibrosis. Cell Tissue Res. 2012; 347 (1): 103–116.

26. Garsen M, Rops ALWMM, Rabelink TJ, Berden JHM, van der Vlag J. The role of heparanase and the endothelial glycocalyx in the development of proteinuria. Nephrol Dial Transplant. 2014; 29 (1): 49–55.

27. Nieuwenhuijs-Moeke GJ, Pischke SE, Berger SP, Sanders JSF, Pol RA, Struys MMRF et al. Ischemia and Reperfusion Injury in Kidney Transplantation: Relevant Mechanisms in Injury and Repair. J Clin Med. 2020; 9 (1): 253.

28. Salvadori M, Rosso G, Bertoni E. Update on ischemiareperfusion injury in kidney transplantation: Pathogenesis and treatment. World J Transplant. 2015; 5 (2): 52.

29. Bedi S, Vidyasagar A, Djamali A. Epithelial-to-mesenchymal transition and chronic allograft tubulointerstitial fibrosis. Transplant Rev (Orlando). 2008; 22 (1): 1–5.

30. Richter K, Kietzmann T. Reactive oxygen species and fibrosis: further evidence of a significant liaison. Cell Tissue Res. 2016; 365 (3): 591–605.

31. Liu Y. Cellular and molecular mechanisms of renal fibrosis. Nat Rev Nephrol. 2011; 7 (12): 684–696.

32. Yang L, Besschetnova TY, Brooks CR, Shah JV, Bonventre JV. Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury. Nat Med. 2010; 16 (5): 535–543.

33. Desvignes C, Dabadie A, Aschero A, Ruocco A, Garaix F, Daniel L et al. Technical feasibility and correlations between shear-wave elastography and histology in kidney fibrosis in children. Pediatr Radiol. 2021; 51 (10): 1879–1888.

34. Ma MK, Law HK, Tse KS, Chan KW, Chan GC, Yap DY et al. Non-invasive assessment of kidney allograft fibrosis with shear wave elastography: A radiological-pathological correlation analysis. Int J Urol. 2018; 25 (5): 450–455.

35. McArthur C, Geddes CC, Baxter GM. Early measurement of pulsatility and resistive indexes: correlation with long-term renal transplant function. Radiology. 2011; 259 (1): 278–285.

36. Полещук ЛА. Характеристика почечной гемодинамики у детей с заболеваниями почек (обзор литературы). Нефрология и диализ. 2006; 8 (3): 225–231.

37. Пыков МИ, Эктов ДБ, Васильев КГ, Кушнир БЛ, Мартыненкова АВ. Параметры гемодинамики почечного трансплантата с разной степенью интерстициального фиброза и тубулярной атрофии в отдаленном посттрансплантационном периоде у детей. Вестник Российского научного центра рентгенорадиологии. 2021; 21 (4): 138–154.

38. Vanhove T, Goldschmeding R, Kuypers D. Kidney fibrosis: origins and interventions. Transplantation. 2017; 101 (4): 713–726.

39. Servais A, Meas-Yedid V, Noel LH, Martinez F, Panterne C, Kreis H et al. Interstitial fibrosis evolution on early sequential screening renal allograft biopsies using quantitative image analysis. Am J Transplant. 2011; 11 (7): 1456–1463.

40. Vahed SZ, Samadi N, Ardalan M. Transplantation diagnosis of interstitial fibrosis and tubular atrophy in kidney allograft implementation of MicroRNAs. Iranian Journal of Kidney Diseases. 2014; 8 (1): 4–12.

41. Genovese F, Manresa AA, Leeming DJ, Karsdal MA, Boor P. The extracellular matrix in the kidney: a source of novel non-invasive biomarkers of kidney fibrosis? Fibrogenesis Tissue Repair. 2014; 7 (1): 1–4.

42. Hartono C, Muthukumar T, Suthanthiran M. Noninvasive diagnosis of acute rejection of renal allografts. Current Opinion in Organ Transplantation. 2010; 15: 35–41.

43. Saritas T, Kramann R. Kidney allograft fibrosis: diagnostic and therapeutic strategies. Transplantation. 2021; 105 (10): e114–e130.

44. Nankivell BJ, P’Ng ChH, O’Connell PhJ, Chapman JR. Calcineurin inhibitor nephrotoxicity through the lens of longitudinal histology: comparison of cyclosporine and tacrolimus eras. Transplantation. 2016; 100 (8): 1723– 1731.

45. Manfro RC, Aquino-Dias EC, Joelsons G, Nogare AL, Carpio VN, Goncalves LF. Noninvasive Tim-3 messenger RNA evaluation in renal transplant recipients with graft dysfunction. Transplantation. 2008; 86 (12): 1869–1874.

46. Isaka Y. Targeting TGF-β Signaling in Kidney Fibrosis. Int J Mol Sci. 2018; 19 (9): 2532. doi: 10.3390/ijms19092532.

47. Nikolova PN, Ivanova MI, Mihailova S, Mihaylova A, Baltadjieva D, Simeonov PL et al. Cytokine gene polymorphism in kidney transplantation – Impact of TGF-β1, TNF-α and IL-6 on graft outcome. Transplant immunology. 2008; 18 (4): 344–348.

48. Mu HJ, Xie P, Chen JY, Gao F, Zou J, Zhang J, Zhang B. Association of TNF-α, TGF-β1, IL-10, IL-6, and IFN-γ gene polymorphism with acute rejection and infection in lung transplant recipients. Clin Transplant. 2014; 28 (9): 1016–1024.

49. Курабекова РМ, Гичкун ОЕ, Мещеряков СВ, Шевченко ОП. Роль полиморфизма гена трансформирующего фактора роста β1 в развитии осложнений после трансплантации солидных органов. Вестник трансплантологии и искусственных органов. 2021; 23 (3): 180–185.

50. Guan Q, Li S, Gao S, Chen H, Nguan CY, Du C. Reduction of chronic rejection of renal allografts by anti-transforming growth factor-β antibody therapy in a rat model. Am J Physiol Renal Physiol. 2013; 305 (2): F199–207.

51. Djamali A, Vidyasagar A, Yagci G, Huang LJ, Reese S. Mycophenolic acid may delay allograft fibrosis by inhibiting transforming growth factor-beta1-induced activation of Nox-2 through the nuclear factor-kappaB pathway. Transplantation. 2010; 90 (4): 387–393.

52. Garber K. Companieswaver in efforts to target transforming growth factor beta in cancer. Journal of the National Cancer Institute. 2009; 101: 1664–1667.

53. Khanna AK, Cairns VR, Becker CG, Hosenpud JD. Transforming growth factor (TGF)-beta mimics and anti-TGF-beta antibody abrogates the in vivo effects of cyclosporine: Demonstration of a direct role of TGF-beta in immunosuppression and nephrotoxicity of cyclosporine. Transplantation. 1999; 67: 882–889.

54. Шевченко ОП, Улыбышева АА, Гичкун ОЕ, Можейко НП, Стаханова ЕА, Кван ВС и др. Галектин-3 при отторжении и фиброзе трансплантированного сердца. Вестник трансплантологии и искусственных органов. 2019; 21 (3): 145–150.

55. Chen SC, Kuo PL. The role of galectin-3 in the kidneys. International Journal of Molecular Sciences. 2016; 17 (4): 565.

56. Gyamdzhyan KA, Kukes VG, Maksimov ML. Clinical value of determining galectin-3 in patients with chronic heart failure. Medical Council. Remedium. 2017; 7: 63–68.

57. Ostendorf T, Eitner F, Floege J. The PDGF family in renal fibrosis. Journal of Pediatric Nephrology. 2012; 27: 1041–1050.

58. Boor P, Ostendorf T, Floege J. PDGF and the progression of renal disease. Nephrology Dialysis Transplantation. 2014; 29 (Suppl 1): I45–I54.

59. Ortiz A. PDGFR-β and kidney fibrosis. EMBO Mol Med. 2020; 12 (3): e11729. doi: 10.15252/emmm.201911729.

60. Киселева ЕП, Крылов АВ, Старикова ЭА, Кузнецова СА. Фактор роста сосудистого эндотелия и иммунная система. Успехи современной биологии. 2009; 129 (4): 1–12.

61. Taimeh Z, Loughran J, Birks EJ, Bolli R. Vascular endothelial growth factor in heart failure. Nature Reviews Cardiology. 2013; 10: 519–530.

62. Kinashi H, Ito Y, Sun T, Katsuno T, Takei Y. Roles of the TGF-β–VEGF-C Pathway in Fibrosis-Related Lymphangiogenesis. Int J Mol Sci. 2018; 19 (9): 2487. doi: 10.3390/ijms19092487.

63. Zhang Y, Zhang C, Li L, Liang X, Cheng P, Li Q et al. Lymphangiogenesis in renal fibrosis arises from macrophages via VEGF-C/VEGFR3-dependent autophagy and polarization. Cell Death Dis. 2021; 12 (1): 109. doi: 10.1038/s41419-020-03385-x.

64. Sayed D, Abdellatif M. MicroRNAs in development and disease. Physiol Rev. 2011; 91 (3): 827–887.

65. Shevchenko O., Sharapchenko S., Gichkun O., Velikiy D., Tsirulnikova O., Gautier S. et al. Mir-339 and galectin-3: diagnostic value in patients with airway obstruction after lung transplantation. Transplant International. 2021; 3 (9): 1733–1739.

66. Perez-Carrillo L, Sanchez-Lazaro I, Trivino JC, Feijoo-Bandin S, Lago F, Gonzalez-Juanatey JR et al. Diagnostic value of serum miR-144-3p for the detection of acute cellular rejection in heart transplant patients. J Heart Lung Transplant. 2022; 41 (2): 137–147.

67. Budding K, Rossato M, van de Graaf EA, Kwakkel-van Erp JM, Radstake TRDJ, Otten HG. Serum miRNAs as potential biomarkers for the bronchiolitis obliterans syndrome after lung transplantation. Transpl Immunol. 2017; 42: 1–4. doi: 10.1016/j.trim.2017.04.002.

68. Liang J, Tang Y, Liu Z, Wang X, Tang L, Zou Z et al. Increased expression of miR-155 correlates with abnormal allograft status in solid organ transplant patients and rat kidney transplantation model. Life Sci. 2019; 227: 51–57.

69. Prokop JW, May T, Strong K, Bilinovich SM, Bupp C, Rajasekaran S et al. Genome sequencing in the clinic: the past, present, and future of genomic medicine. Physiol Genomics. 2018; 50 (8): 563–579.

70. Chau BN, Xin C, Hartner J, Ren S, Castano AP, Linn G et al. MicroRNA-21 promotes fibrosis of the kidney by silencing metabolic pathways. Sci Transl Med. 2012; 4 (121): 121ra18. doi: 10.1126/scitranslmed.3003205.

71. Denby L, Ramdas V, Lu R, Conway BR, Grant JS, Dickinson B et al. MicroRNA-214 antagonism protects against renal fibrosis. J Am Soc Nephrol. 2014; 25 (1): 65–80.

72. Chung AC, Huang XR, Meng X, Lan HY. MiR-192 mediates TGFbeta/Smad3-driven renal fibrosis. Journal of the American Society of Nephrology. 2010; 21: 1317–1325.

73. Wang B, Komers R, Carew R, Winbanks CE, Xu B, Herman-Edelstein M et al. Suppression of microRNA-29 expression by TGF-β1 promotes collagen expression and renal fibrosis. J Am Soc Nephrol. 2012; 23 (2): 252–265.

74. Oba S, Kumano S, Suzuki E, Nishimatsu H, Takahashi M, Takamori H et al. miR-200b precursor can ameliorate renal tubulointerstitial fibrosis. PLoS One. 2010; 5 (10): e13614. doi: 10.1371/journal.pone.0013614.

75. Jiang L, Qiu W, Zhou Y, Wen P, Fang L, Cao H et al. A microRNA-30e/mitochondrial uncoupling protein 2 axis mediates TGF-β1-induced tubular epithelial cell extracellular matrix production and kidney fibrosis. Kidney Int. 2013; 84 (2): 285–296.

76. Li R, Chung AC, Dong Y, Yang W, Zhong X, Lan HY. The microRNA miR-433 promotes renal fibrosis by amplifying the TGF-β/Smad3-Azin1 pathway. Kidney Int. 2013; 84 (6): 1129–1144.


Рецензия

Для цитирования:


Быстрова О.Р., Стаханова Е.А., Ильчук М.И., Улыбышева А.А., Гичкун О.Е., Сайдулаев Д.А., Шевченко О.П. Биомаркеры фиброза трансплантированной почки. Вестник трансплантологии и искусственных органов. 2022;24(3):94-101. https://doi.org/10.15825/1995-1191-2022-3-94-101

For citation:


Bystrova O.R., Stakhanova E.A., Ilchuk M.I., Ulybysheva A.A., Gichkun O.E., Saydulaev D.A., Shevchenko O.P. Biomarkers of renal transplant fibrosis. Russian Journal of Transplantology and Artificial Organs. 2022;24(3):94-101. https://doi.org/10.15825/1995-1191-2022-3-94-101

Просмотров: 507


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1995-1191 (Print)