Preview

Russian Journal of Transplantology and Artificial Organs

Advanced search

Lymphatic circulation and heart failure

https://doi.org/10.15825/1995-1191-2021-3-186-191

Abstract

Objective: to summarize current knowledge about the interactions between the lymphatic/cardiovascular systems and interstitial tissue, which are associated with heart failure (HF). The authors attempt to answer the fundamental question of whether lymphatic insufficiency is a cause or consequence of HF. Understanding lymph formation processes in HF will allow finding new ways of treating HF.

About the Authors

G. P. Itkin
Shumakov National Medical Research Center of Transplantology and Artificial Organs; Moscow Institute of Physics and Technology
Russian Federation

Georgiy P. Itkin

1, Shchukinskaya str., Moscow, 123182



M. G. Itkin
Pensilvenia State University
United States

Philadelfia PN



References

1. Starling EH. The Influence of Mechanical Factors on Lymph Production. J Physiol. 1894: 224–267.

2. Starling EH. On the Absorption of Fluids from the Connective Tissue Spaces. J Physiol. 1896; 19 (4): 312–326.

3. Starling E. The Arris and Bale Lectures on Some points in the pathology of the heart disease. Lecture 2, the effect of the heart failure on the circulation. Lancet. 1897; 149 (3836): 652–655.

4. Guyton AC, Lindsey AW, Johnnie OH, John WW, Malcolma AF. Effect of elevated left atrial pressure and decreased plasma protein concentration on the development of pulmonary edema. Circ Res. 1959; 7 (4): 649– 657.

5. Michel CC. Starling: The formulation of his hypothesis of microvascular fluid exchange and its significacance after 100 years. Exp Physiol. 1997 Jan; 82 (1): 1–30.

6. Scholander APF, Hargens AR, Miller SL. Negative Pressure in the Interstitial Fluid of Animals. Fluid tensions are spectacular in plants; in animals they are elusively small, but just as vital. Science. 1968; 161 (3839): 321– 322.

7. Levick JR. Capillary filtration-absorption balance reconsidered in light of dynamic extravascular factors. Exp Physiol. 1991; 76 (6): 825–857.

8. Levick JR. Introduction to cardiovascular physiology. 1989.

9. Michel CC, Phillips ME. Steady-state fluid filtration at different capillary pressures in perfused frog mesenteric capillaries. J Physiol. 1987; 388 (1): 421–435.

10. Levick JR, Michel CC. Microvascular fluid exchange and the revised Starling principle. Cardiovasc Res. 2010; 87 (2): 198–210.

11. Guyton AC, Granger HJ, Taylor AE. Interstitial fluid pressure. Physiol Rev. 1971; 51 (3): 527–563.

12. Scallan JP, Zawieja SD, Castorena-Gonzalez JA, Davis MJ. Lymphatic pumping: mechanics, mechanisms and malfunction. J Physiol. 2016: 5749–68.

13. Davis MJ, Rahbar E, Gashev AA, Zawieja DC, Moore JE. Determinants of valve gating in collecting lymphatic vessels from rat mesentery. Am J Physiol Heart Circ Physiol. 2011; 301 (1): H48–60.

14. Unthank JL, Bohlen HG. Lymphatic pathways and role of valves in lymph propulsion from small intestine. Am J Physiol Liver Physiol. 2017; 254 (3): G389–398.

15. Von Der Weid PY, Zawieja DC. Lymphatic smooth muscle: The motor unit of lymph drainage. Int J Biochem Cell Biol. 2004; 36 (7): 1147–53.

16. Olszewski WL, Engeset A. Intrinsic contractility of prenodal lymph vessels and lymph flow in human leg. Am J Physiol. 1980; 239 (6): H775–H777.

17. Aspelund A, Robcluc MR, Karaman S, Makinen K. Lymphatic System in Cardiovascular Medicine. Circulation Research. 2016; 118: 515–530.

18. Jones D, Min W. An overview of lymphatic vessels and their emerging role in cardiovascular disease. Journal of Cardiovascular Disease Research. 2011; 2 (3): 141–152.

19. Voors AA, Davison BA, Teerlink JR, Felker GM, Cotter G, Filippatos G et al. RELAX-AHF Investigators. Diuretic response in patients with acute decompensated heart failure: characteristics and clinical outcome – an analysis from RELAX-AHF. Eur J Heart Fail. 2014; 16: 1230–1240.

20. Valente MA, Voors AA, Damman K, Van Veldhuisen DJ, Massie BM, O’Connor CM et al. Diuretic response in acute heart failure: clinical characteristics and prognostic significance. Eur Heart J. 2014; 35: 1284–1293.

21. Engeset A, Olszewski W, Jæger PM, Sokolowski J, Theodorsen L. Twenty-Four Hour Variation in Flow and Composition of Leg Lymph in Normal Men. Acta Physiol Scand. 1977; 99 (2): 140–148.

22. Allen SJ, Drake RE, Laine GA, Gabel JC. Effect of thoracic duct drainage on hydrostatic pulmonary edema and pleural effusion in sheep. J Appl Physiol. 1991; 71 (1): 314–316.

23. Dumont AE, Clauss RH, Reed GE, Tice DA. Lymph Drainage in Patients with Congestive Heart Failure. N Engl J Med. 1963; 269 (18): 949–952.

24. Witte MH, Dumon AE, Clauss RH, Rader B, Levine N, Breed ES. Lymph Circulation in Congestive Heart Failure: Effect of External Thoracic Duct Drainage. Circulation. 1969; 39 (6): 723–733.

25. Clauss RH, Breed ES. Controlled rate of drainage of thoracic duct lymph. Am J Surg. 1970; 119 (5): 610–612.

26. Hraška V. Decompression of thoracic duct: New approach for the treatment of failing.

27. Chavhan GB, Amaral JG, Temple M, Itkin M. MR Lymphangiography in Children: Technique and Potential Applications. Radiographics. 2017; 37 (6): 1775–1790.

28. Dori Y, Zviman MMMM, Itkin M. Dynamic Contrastenhanced MR Lymphangiography: Feasibility Study in Swine. Radiology. 2014; 273 (2): 410–416.

29. Butler J, Hamo CE, Udelson JE, Pitt B, Yancy C, Shah S et al. Exploring New Endpoints for Patients with Heart Failure with Preserved Ejection Fraction. Circ Hear Fail. 2016; 9 (11): 1–8.


Review

For citations:


Itkin G.P., Itkin M.G. Lymphatic circulation and heart failure. Russian Journal of Transplantology and Artificial Organs. 2021;23(3):186-191. https://doi.org/10.15825/1995-1191-2021-3-186-191

Views: 982


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1995-1191 (Print)