Preview

Russian Journal of Transplantology and Artificial Organs

Advanced search

Comparative study of chondrogenesis of human adipose-derived mesenchymal stem cells when cultured in collagen-containing media under in vitro conditions

https://doi.org/10.15825/1995-1191-2021-3-90-100

Abstract

In terms of method of production, collagen carriers are subdivided into materials obtained on the basis of extracellular matrix (ECM) components, particularly collagen-containing hydrogels and decellularized tissue.

Objective: to compare in vitro the ability of biopolymer microheterogeneous collagen-containing hydrogel (BMCH) and tissue-specific matrix from decellularized porcine articular cartilage (DPAC) to support adhesion, proliferation and chondrogenic differentiation of human adipose-derived mesenchymal stem cells (hAMSCs).

Materials and methods. For cartilage decellularization, we carried out treatment with surfactants (sodium dodecyl sulfate, Triton X-100) followed by exposure in DNAase. The metabolic activity of hAMSCs was assessed by PrestoBlue™ (Invitrogen, USA) staining. The morphological study of cell-engineered constructs (CECs) formed by culturing hAMSCs in the presence of matrices was performed using histological staining and scanning electron microscopy (SEM) with lanthanide contrasting.

Results. The number of cells on the surface of both BMCH and DPAC increased within 14 days. Mitochondrial activity of the cells was 1.7, 1.7, and 1.3 times higher on days 3, 10, and 14 when cultured on DPAC compared to BMCH, respectively. On day 14 of cultivation in the chondrogenic culture medium, hAMSCs formed cell layers on the DPAC surface and on the BMCH surface. Cytoplasm of the cells included numerous granules, which, when stained, resembled the matrix itself. On the DPAC matrix surface, cells were more evenly distributed, whereas in the case of BMCH, cell adhesion and proliferation were observed only in certain areas. The ECM produced by the cells contained collagen and glycosaminoglycans (GAGs).

Conclusion. The ability of DPAC obtained according to the developed protocol to form CECs with hAMSCs with uniform distribution of cells and their production of specific collagen- and GAG-containing ECM suggests that DPAC is effective in regeneration of damaged cartilage. Chondrogenic differentiation of hAMSCs was observed both when cultured with BMCH and with DPAC. When creating a tissue equivalent of cartilage in vitro, the advantage of using tissue-specific matrix over BMCH should be considered.

About the Authors

Y. B. Basok
Shumakov National Medical Research Center of Transplantology and Artificial Organs
Russian Federation

Yuliya B. Basok

1, Shchukinskaya str., Moscow, 123182



A. M. Grigoryev
Shumakov National Medical Research Center of Transplantology and Artificial Organs
Russian Federation

Aleksej M. Grigoryev

Moscow



L. A. Kirsanova
Shumakov National Medical Research Center of Transplantology and Artificial Organs
Russian Federation

Ljudmila A. Kirsanova

Moscow



A. D. Kirillova
Shumakov National Medical Research Center of Transplantology and Artificial Organs
Russian Federation

Aleksandra D. Kirillova

Moscow



A. M. Subbot
Research Institute of Eye Diseases
Russian Federation

Anastasija M. Subbot

Moscow



A. V. Tsvetkova
Orekhovich Institute of Biomedical Chemistry
Russian Federation

Anastasija V. Tsvetkova

Moscow



E. A. Nemets
Shumakov National Medical Research Center of Transplantology and Artificial Organs
Russian Federation

Evgenij A. Nemets

Moscow



V. I. Sevastianov
Shumakov National Medical Research Center of Transplantology and Artificial Organs
Russian Federation

Viktor I. Sevastianov

Moscow



References

1. Kwon H, Brown WE, Lee CA, Wang D, Paschos N, Hu JC et al. Surgical and tissue engineering strategies for articular cartilage and meniscus repair. Nat Rev Rheumatol. 2019; 15 (9): 550–570. doi: 10.1038/s41584-019-0255-1. PMID: 31296933.

2. Bernhard JC, Vunjak-Novakovic G. Should we use cells, biomaterials, or tissue engineering for cartilage regeneration? Stem Cell Res Ther. 2016; 7 (1): 56. doi: 10.1186/s13287-016-0314-3. PMID: 27089917.

3. Schneider S, Unger M, van Griensven M, Balmayor ER. Adipose-derived mesenchymal stem cells from liposuction and resected fat are feasible sources for regenerative medicine. Eur J Med Res. 2017; 22 (1): 17. doi: 10.1186/s40001-017-0258-9. PMID: 28526089.

4. Tsvetkova AV, Vakhrushev IV, Basok YB, Grigor’ev AM, Kirsanova LA, Lupatov AY et al. Chondrogeneic potential of MSC from different sources in spheroid culture. Bull Exp Biol Med. 2021; 170 (4): 528–536. doi: 10.1007/s10517-021-05101-x. PMID: 33725253.

5. Rai V, Dilisio MF, Dietz NE, Agrawal DK. Recent strategies in cartilage repair: A systemic review of the scaffold development and tissue engineering. J Biomed Mater Res A. 2017; 105 (8): 2343–2354. doi: 10.1002/jbm.a.36087. PMID: 28387995.

6. Wylie JD, Hartley MK, Kapron AL, Aoki SK, Maak TG. What is the effect of matrices on cartilage repair? Clin Orthop Relat Res. 2015; 473 (5): 1673–1682. doi: 10.1007/s11999-015-4141-0. PMID: 25604876.

7. Sevastianov VI, Perova NV. Bio-polymer heterogenic hydrogel Sphero®GEL – an injection biodegradable implant for substitutive and regenerative medicine. Practical medicine. 2014; 8 (84): 120–126. [In Russ, English abstract].

8. Sevastianov VI, Basok YB, Grigor’ev AM, Kirsanova LA, Vasilets VN. Formation of tissue-engineered construct of human cartilage tissue in a flow-through bioreactor. Bull Exp Biol Med. 2017; 164 (2): 269–273. doi: 10.1007/s10517-017-3971-z. PMID: 29177908.

9. Cramer MC, Badylak SF. Extracellular matrix-based biomaterials and their influence upon cell behavior. Ann Biomed Eng. 2020; 48 (7): 2132–2153. doi: 10.1007/s10439-019-02408-9. PMID: 31741227.

10. Basok YuB, Kirillova AD, Grigoryev AM, Kirsanova LA, Nemets EA, and Sevastianov VI. Fabrication of microdispersed tissue-specific decellularized matrix from porcine articular cartilage. Inorganic Materials: Applied Research. 2020; 11 (5). 1153–1159.

11. Sun Y, Yan L, Chen S, Pei M. Functionality of decellularized matrix in cartilage regeneration: A comparison of tissue versus cell sources. Acta Biomater. 2018; 74: 56–73. doi: 10.1016/j.actbio.2018.04.048. PMID: 29702288.

12. Pei M, Li JT, Shoukry M, Zhang Y. A review of decellularized stem cell matrix: a novel cell expansion system for cartilage tissue engineering. Eur Cell Mater. 2011; 22: 333–343. doi: 10.22203/ecm.v022a25. PMID: 22116651.

13. Sevastyanov VI, Perova NV, Basok JuB, Nemets EA. Biomimetiki vnekletochnogo matriksa v tkanevoj inzhenerii i regenerativnoj medicine dlja travmatologii i ortopedii. Opinion Leader. 2020; 6 (35): 35–46.

14. Tsvetkova AV, Vakhrushev IV, Basok YB, Grigor’ev AM, Kirsanova LA, Lupatov AY et al. Chondrogeneic Potential of MSC from Different Sources in Spheroid Culture. Bull Exp Biol Med. 170 (4): 528–536. doi: 10.1007/s10517-021-05101-x. Epub 2021 Mar 16. PMID: 33725253.

15. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006; 8 (4): 315–317. doi: 10.1080/14653240600855905. PMID: 16923606.

16. Novikov I, Subbot A, Turenok A, Mayanskiy N, Chebotar I. A rapid method of whole cell sample preparation for scanning electron microscopy using neodymium chloride. Micron. 2019; 124: 102687. doi: 10.1016/j.micron.2019.102687. PMID: 31302532.

17. Iksanova AG, Bondar’ OV, Balakin KV. Metody issledovanija citotoksichnosti pri skrininge lekarstvennyh preparatov. Uchebnometodicheskoe posobie k prakticheskim zanjatijam po kursu «Metody skrininga fiziologicheski aktivnyh veshchestv». Kazan’: Kazanskij universitet, 2016. 40.

18. Bourguignon LY, Singleton PA, Zhu H, Zhou B. Hyaluronan promotes signaling interaction between CD44 and the transforming growth factor beta receptor I in metastatic breast tumor cells. J Biol Chem. 2002; 277 (42): 39703–39712. doi: 10.1074/jbc.M204320200. PMID: 12145287.

19. Responte DJ, Natoli RM, Athanasiou KA. Identification of potential biophysical and molecular signalling mechanisms underlying hyaluronic acid enhancement of cartilage formation. J R Soc Interface. 2012; 9 (77): 3564– 3573. doi: 10.1098/rsif.2012.0399. PMID: 22809846.

20. Nehrer S, Breinan HA, Ramappa A, Shortkroff S, Young G, Minas T et al. Canine chondrocytes seeded in type I and type II collagen implants investigated in vitro. J Biomed Mater Res. 1997; 38 (2): 95–104. doi: 10.1002/(sici)1097-4636(199722)38:23.0.co;2-b. PMID: 9178736.

21. Tiruvannamalai Annamalai R, Mertz DR, Daley EL, Stegemann JP. Collagen Type II enhances chondrogenic differentiation in agarose-based modular microtissues. Cytotherapy. 2016; 18 (2): 263–277. doi: 10.1016/j.jcyt.2015.10.015. PMID: 26794716.


Supplementary files

Review

For citations:


Basok Y.B., Grigoryev A.M., Kirsanova L.A., Kirillova A.D., Subbot A.M., Tsvetkova A.V., Nemets E.A., Sevastianov V.I. Comparative study of chondrogenesis of human adipose-derived mesenchymal stem cells when cultured in collagen-containing media under in vitro conditions. Russian Journal of Transplantology and Artificial Organs. 2021;23(3):90-100. https://doi.org/10.15825/1995-1191-2021-3-90-100

Views: 632


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1995-1191 (Print)