Современные тенденции в создании бесклеточных алло- и ксенотканей для реконструкции структур сердца
https://doi.org/10.15825/1995-1191-2021-1-150-156
Аннотация
Тканевая инженерия обладает значительным потенциалом для решения проблем долговечности биологических тканей при использовании в реконструктивной хирургии структур сердца и сосудов. В целях получения биоматериала, морфологически и функционально близкого к поврежденной ткани сердца человека, была предложена технология децеллюляризации. В обзоре рассматриваются различные аспекты и модели децеллюляризации биологических тканей, в том числе современная технология использования сверкритического диоксида углерода как наиболее экологичного и перспективного метода.
Ключевые слова
Об авторах
С. И. БабенкоРоссия
121552, Москва, Рублевское шоссе, д. 135.
Р. М. Муратов
Россия
121552, Москва, Рублевское шоссе, д. 135.
М. Н. Соркомов
Россия
Соркомов Максим Нюргустанович.
121552, Москва, Рублевское шоссе, д. 135.
Тел. (495) 414-78-49
Список литературы
1. Акатов ВС, Муратов РМ, Фадеева ИС, Сачков АС, Бритиков ДВ, Фесенко НИ и др. Изучение биосовместимости трансплантантов клапанов сердца, девитализированных антикальцинозным способом. Гены & Клетки. 2010; V (2): 36-41.
2. Курапеев ДИ, Лаврешин АВ, Анисимов СВ. Тканевая инженерия клапанов сердца: децеллюризация алло-и ксенографтов. Гены & Клетки. 2012; VII (1): 34-39.
3. Sawada K, Terada D, Yamaoka T, Kitamura S, Fujisa-to T. Cell removal with supercritical carbon dioxide for acellular artificial tissue. J Chem Technol Biotechnol. 2008; 83: 943-949.
4. Courtman DW, Pereira CA, Kashef V, McComb D, Lee JM, Wilson GJ. Development of a pericardial acellular matrix biomaterial: Biochemical and mechanical effects of cell extraction. Journal of Biomedical Materials Research. 1994 Jun; 28 (Issue 6): 655-666. https://doi.org/10.1002/jbm.820280602.
5. Gilbert TW, Sellaro TL, Badylak SF. Decellularization of tissues and organs. Biomaterials. 2006; 27: 3675-3683. doi: 10.1016/j.biomaterials.2006.02.014.
6. Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials. Volume 32, Issue 12, April 2011, Pages 32333243. doi: 10.1016/j.biomaterials.2011.01.057.
7. (Gil-Ramirez A, Rosmark O, Spegel P, Sward K, Westergren-Thorsson G, Larsson-Callerfelt A-K, Rodriguez-Meizosocorresponding I. Pressurized carbon dioxide as a potential tool for decellularization of pulmonary arteries for transplant purposes. Sci Rep. 2020; 10: 4031. Published online 2020 Mar 4. https://doi.org/10.1038/s41598-020-60827-4.
8. Bechtel JF, Muller-Steinhardt M, Schmidtke C, Bruswik A, Stierle U, Sievers HH. Evaluation of the decellularized pulmonary valve homograft (SynerGraft). J Heart Valve Dis. 2003; 12: 734-739.
9. Cebotari S, Mertsching H, Kallenbach K, Kostin S, Repin O, Batrinac A et al. Construction of Autologous Human Heart Valves Based on an Acellular Allograft Matrix. Circulation. 2002; 106: I-63-I-68.
10. Tudorache I, Cebotari S, Sturz G, Kirsch L, Hurschler C, Hilfiker A et al. Tissue Engineering of Heart Valves: Biomechanical and Morphological Properties of Decellularized Heart Valves. J Heart Valve Dis. 2007 Sep; 16 (5): 567-573; discussion 574.
11. Gilpin A, Yang Y. Decellularization Strategies for Regenerative Medicine: From Processing Techniques to Applications. Biomed Res Int. 2017 Apr; 2017: 9831534. https://doi.org/10.1155/2017/9831534.
12. Steinhoff G, Stock U, Karim N, Mertsching H, Timke A, Meliss RR. Tissue Engineering of Pulmonary Heart Valves on Allogenic Acellular Matrix Conduits: In Vivo Restoration of Valve Tissue. Circulation. 2000 Nov 7; 102 (19 Suppl 3): III50-5. doi: 10.1161/01.cir.102.suppl_3.iii-50.
13. Xing Q, Yates K, Tahtinen M, Shearier E, Qian Z, Zhao F. Decellularization of Fibroblast Cell Sheets for Natural Extracellular Matrix Scaffold Preparation. Tissue Engineering Part C: Methods. 2014; 21 (1). doi: 10.1089/ten.tec.2013.0666.
14. Wilson GJ, Courtman DW, Klement P, Lee JM, Yeger H. Acellular matrix: a biomaterials approach for coronary artery bypass and heart valve replacement. Ann Thorac Surg. 1995; 60 (2 Suppl): S353-S358. doi: 10.1016/0003-4975(95)98967-y.
15. Wong ML, Griffiths LG. Immunogenicity in xenogeneic scaffold generation: antigen removal vs. decellularization. Acta Biomaterialia. 31 Jan 2014; 10 (5): 1806-1816. doi: 10.1016/j.actbio.2014.01.028.
16. Sayk F, Bos I, Schubert U, Wedel T, Sievers H-H. Histopathologic findings in a novel decellularized pulmonary homograft: An autopsy study. Ann Thorac Surg. 2005; 79: 1755-1758. doi: 10.1016/j.athoracsur.2003.11.049.
17. Kneib C, von Glehn C, Costa F, Costa M, Susin M. Evaluation of humoral immune response to donor HLA after implantation of cellularized versus decellularized human heart valve allografts. Tissue Antigens. 2012; 80: 165174. doi: 10.1111/j.1399-0039.2012.01885.x. Epub 2012 May 25.
18. Goncalves AC, Griffiths LG, Anthony RV, Orton EC. De-cellularization of bovine pericardium for tissue-engineering by targeted removal of xenoantigens. The Journal of Heart Valve Disease. 01 Mar 2005; 14 (2): 212-217.
19. Griffiths LG, Choe LH, Reardon KF, Dow SW, Christopher Orton E. Immunoproteomic identification of bovine pericardium xenoantigens. Biomaterials. 2008; 29: 3514-3520. doi: 10.1016/j.biomaterials.2008.05.006.
20. Syedain ZH, Bradee AR, Kren S, Taylor DA, Tranquillo RT. Decellularized tissue-engineered heart valve leaflets with recellularization potential. Tissue Engineering Part A. 2012; 19: 759-769. doi: 10.1089/ten.TEA.2012.0365.
21. Keane TJ, Londono R, Turner NJ, Badylak SF. Consequences of ineffective decellularization of biologic scaffolds on the host response. Biomaterials. 2012; 33: 1771-1781. doi: 10.1016/j.biomaterials.2011.10.054.
22. Gilbert TW, Freund JM, Badylak SF. Quantification of DNA in biologic scaffold materials. The Journal of Surgical Research. 2009; 152: 135-139. doi: 10.1016/j.jss.2008.02.013.
23. Boer U, Lohrenz A, Klingenberg M, Pich A, Haverich A, Wilhelmi M. The effect of detergent-based decellularization procedures on cellular proteins and immunogenicity in equine carotid artery grafts. Biomaterials. 2011; 32: 9730-9737. doi: 10.1016/j.biomaterials.2011.09.015.
24. Kasimir MT, Rieder E, Seebacher G, Nigisch A, Dekan B, Wolner E et al. Decellularization does not eliminate thrombogenicity and inflammatory stimulation in tissue-engineered porcine heart valves. J Heart Valve Dis. 2006; 15 (2): 278-286.
25. VeDepo MC, Detamore MS, Hopkins RA, Converse GL. Recellularization of decellularized heart valves: Progress toward the tissue-engineered heart valve. J Tissue Eng. 2017 Jan-Dec; 8: 2041731417726327. doi: 10.1177/2041731417726327.
26. Casali DM, Handleton RM, Shazly T, Matthews MA. A novel supercritical CO2-based decellularization method for maintaining scaffold hydration and mechanical properties. The Journal of Supercritical Fluids. 2018 Jan; 131: 72-81. https://doi.org/10.1016/j.supflu.2017.07.021.
27. Lee JW, Fukusaki E, Bamba T. Application of supercritical fluid carbon dioxide to the extraction and analysis of lipids. Bioanalysis. 2012; 4: 2413-2422. https://doi.org/10.4155/bio.12.198.
28. Hennessy RS, Jana S, Tefft BJ, Helder MR, Young MD, Hennessy RR et al. Supercritical Carbon Dioxide-Based Sterilization of Decellularized Heart Valves. JACC Basic Transl Sci. 2017 Feb; 2 (1): 71-84. doi: 10.1016/j.jacbts.2016.08.009.
Рецензия
Для цитирования:
Бабенко С.И., Муратов Р.М., Соркомов М.Н. Современные тенденции в создании бесклеточных алло- и ксенотканей для реконструкции структур сердца. Вестник трансплантологии и искусственных органов. 2021;23(1):150-156. https://doi.org/10.15825/1995-1191-2021-1-150-156
For citation:
Babenko S.I., Muratov R.M., Sorcomov M.N. Current trends in the creation of cell-free allo- and xenotissues for reconstruction of heart structures. Russian Journal of Transplantology and Artificial Organs. 2021;23(1):150-156. https://doi.org/10.15825/1995-1191-2021-1-150-156