Preview

Вестник трансплантологии и искусственных органов

Расширенный поиск

Материалы для создания тканеинженерных конструкций методом 3D-биопечати при восстановлении хрящевой и мягких тканей

https://doi.org/10.15825/1995-1191-2021-1-60-74

Полный текст:

Аннотация

3D-биопечать - динамично развивающаяся технология тканевой инженерии и регенеративной медицины. Основным преимуществом данного метода является возможность воспроизведения заданной геометрии и структуры скаффолда как в отношении формы тканеинженерной конструкции, так и распределения ее компонентов. Ключевым фактором биопечати являются биочернила - биосовместимый материал, имитирующий внеклеточный матрикс с инкорпорированными в него клетками. Для соответствия всем предъявляемым требованиям биочернила должны включать в себя не только основной компонент, но и другие составляющие, обеспечивающие пролиферацию, дифференцировку клеток и функционирование тканевой конструкции в целом. Целью обзора является анализ свойств, возможностей и ограничений в использовании наиболее распространенных материалов для биопечати скаффолдов хрящевой ткани.

Об авторах

Н. В. Аргучинская
Медицинский радиологический научный центр имени А.Ф. Цыба - филиал ФГБУ «НМИЦ радиологии» Минздрава России
Россия

249036, Калужская область, Обнинск, ул. Королева, д. 4.



Е. Е. Бекетов
Медицинский радиологический научный центр имени А.Ф. Цыба - филиал ФГБУ «НМИЦ радиологии» Минздрава России
Россия

Бекетов Евгений Евгеньевич.

249036, Калужская область, Обнинск, ул. Королева, д. 4.

Тел. (960) 523-64-49



Е. В. Исаева
Медицинский радиологический научный центр имени А.Ф. Цыба - филиал ФГБУ «НМИЦ радиологии» Минздрава России
Россия

249036, Калужская область, Обнинск, ул. Королева, д. 4.



Н. С. Сергеева
Московский научно-исследовательский онкологический институт имени П.А. Герцена -филиал ФГБУ «НМИЦ радиологии» Минздрава России, Москва, Российская Федерация; Российский национальный исследовательский медицинский университет имени Н.И. Пирогова Минздрава России
Россия

Москва.



П. В. Шегай
Национальный медицинский исследовательский центр радиологии Минздрава России
Россия

Москва.



С. А. Иванов
Медицинский радиологический научный центр имени А.Ф. Цыба - филиал ФГБУ «НМИЦ радиологии» Минздрава России
Россия

249036, Калужская область, Обнинск, ул. Королева, д. 4.



А. Д. Каприн
Национальный медицинский исследовательский центр радиологии Минздрава России
Россия

Москва.



Список литературы

1. Lee J, Yeo M, Kim W, Koo Y, Kim GH. Development of a tannic acid cross-linking process for obtaining 3D porous cell-laden collagen structure. Int J Biol Macromol. 2018; 110: 497-503. doi: 10.1016/j.ijbiomac.201710.105. PMID: 29054525.

2. Diamantides N, Dugopolski C, Blahut E, Kennedy S, Bonassar LJ. High density cell seeding affects the rheology and printability of collagen bioinks. Biofabrication. 2019; 11 (4): 045016. doi: 10.1088/1758-5090/ab3524. PMID: 31342915.

3. Rhee S, Puetzer JL, Mason BN, Reinhart-King CA, Bonassar LJ. 3D bioprinting of spatially heterogeneous collagen constructs for cartilage tissue engineering. ACS Biomater Sci Eng. 2016; 2 (10): 1800-05. doi: 10.1021/acsbiomaterials.6b00288.

4. Matai I, Kaur G, Seyedsalehi A, McClinton A, Laurencin CT. Progress in 3D bioprinting technology for tissue/ organ regenerative engineering. Biomaterials. 2020; 226: 119536. doi: 10.1016/j.biomaterials.2019.119536. PMID 31648135.

5. Groll J, Burdick JA, Cho DW, Derby B, Gelinsky M, Heilshorn SC et al. A definition of bioinks and their distinction from biomaterial inks. Biofabrication. 2018; 11 (1): 013001. doi: 10.1088/1758-5090/aaec52. PMID: 30468151.

6. Whitford WG, Hoying JB. A bioink by any other name: terms, concepts and constructions related to 3D bioprinting. FUTURE SCIENCE. 2016; 3 (2). doi: 10.4155/fsoa-2016-0044.

7. Williams D, Thayer P, Martinez H, Gatenholm E, Khademhosseini A. A perspective on the physical, mechanical and biological specifications of bioinks and the development of functional tissues in 3D bioprinting. Bioprinting. 2018; 9: 19-36. doi: 10.1016/j.bprint.2018.02.003.

8. Бекетов ЕЕ, Исаева ЕВ, Шегай ПВ, Иванов СА, Каприн АД. Современное состояние тканевой инженерии для восстановления хрящевой ткани. Гены и клетки. 2019; 2: 12-20.

9. Yang X, Lu Z, Wu H, Li W, Zheng L, Zhao J. Collagenalginate as bioink for three-dimensional (3D) cell printing based cartilage tissue engineering. Mater Sci Eng C Mater Biol Appl. 2018; 83: 195-201. doi: 10.1016/j. msec.2017.09.002. PMID: 29208279.

10. Izadifar Z, Chang T, Kulyk W, Chen X, Eames BF. Analyzing Biological Performance of 3D-Printed, Cell-Impregnated Hybrid Constructs for Cartilage Tissue Engineering. Tissue Eng Part C Methods. 2016; 22 (3): 173-188. doi: 10.1089/ten.TEC.2015.0307. PMID: 26592915.

11. Apelgren P, Amoroso M, Lindahl A, Brantsing C, Rotter N, Gatenholm P et al. Chondrocytes and stem cells in 3D-bioprinted structures create human cartilage in vivo. PLoS One. 2017; 12 (12): e0189428. doi: 10.1371/journal.pone.0189428. PMID: 29236765.

12. Moller T, Amoroso M, Hagg D, Brantsing C, Rotter N, Apelgren P et al. In vivo Chondrogenesis in 3D Bioprinted Human Cell-laden Hydrogel Constructs. Plast Reconstr Surg Glob Open. 2017; 5 (2). doi: 10.1097/GOX.0000000000001227. PMID: 28280669.

13. Schutz K, Placht A-M, Paul B, Bruggemeier S, Gelinsky M, Lode A. Three-dimensional plotting of a cellladen alginate/methylcellulose blend: towards biofabrication of tissue engineering constructs with clinically relevant dimensions. J Tissue Eng Regen Med. 2017; 11: 1574-1587. doi: 10.1097/GOX.0000000000001227. PMID: 28280669.

14. Гусев ИВ. Разработка высокоструктурированных гидрогелевых депо-материалов для направленной доставки лекарственных препаратов: Дис. . канд. тех. наук. М., 2015. 182.

15. Giuseppe MD, Law N, Webb B, Macrae RA, Liew LJ, Sercombe TB et al. Mechanical behaviour of alginate-gelatin hydrogels for 3D bioprinting. J Mech Behav Biomed Mater. 2018; 79: 150-7. doi: 10.1016/j.jmbbm.2017.12.018. PMID: 29304429.

16. Roushangar ZB, Shabgard MR, Roshangar L. Mechanical and biological performance of printed alginate/ methylcellulose/halloysite nanotube/polyvinylidene fluoride bio-scaffolds. Mater Sci Eng C Mater Biol Appl. 2018; 92: 779-789. doi: 10.1016/j.msec.2018.07.035. PMID: 30184807.

17. Sakai S, Ohi H, Hotta T, Kamei H, Taya M. Differentiation potential of human adipose stem cells bioprinted with hyaluronic acid/gelatin-based bioink through microextrusion and visible light-initiated crosslinking. Biopolymers. 2018; 109 (2): e23080. doi: 10.1002/bip.23080. PMID: 29139103.

18. Liu W, Heinrich MA, Zhou Y, Akpek A, Hu N, Liu X et al. Extrusion bioprinting of shear-thinning gelatin methacryloyl bioinks. Adv Healthc Mater. 2017; 6 (12): 1601451. doi: 10.1002/adhm.201601451. PMID: 28464555.

19. Onofrillo C, Duchi S, O'Connell CD, Blanchard R, O'Connor AJ, Scott M et al. Biofabrication of human articular cartilage: A path towards the development of a clinical treatment. Biofabrication. 2018; 10 (4): 045006. doi: 10.1088/1758-5090/aad8d9. PMID: 30088479.

20. Shi W, Sun M, Hu X, Ren B, Cheng J, Li C et al. Structurally and Functionally Optimized Silk-Fibroin-Gelatin Scaffold Using 3D Printing to Repair Cartilage Injury in vitro and in vivo. Adv Mater. 2017; 29 (29). doi: 10.1002/adma.201701089. PMID: 28585319.

21. Wu X, Chen K, Zhang D, Xu L, Yang X. Study on the technology and properties of 3D bioprinting SF/GT/n-HA composite scaffolds. Materials Letters. 2019; 238: 89-92. doi: 10.1016/j.matlet.2018.11.151.

22. Singh YP, Bandyopadhyay A, Mandal BB. 3D Bioprinting Using Cross-Linker-Free Silk-Gelatin Bioink for Cartilage Tissue Engineering. ACS Appl Mater Interfaces. 2019; 11 (37): 33684-33696. doi: 10.1021/acsami.9b11644. PMID: 31453678.

23. Hiller T, Berg J, Elomaa L, Rohrs V, Ullah I, Schaar K et al. Generation of a 3D Liver Model Comprising Human Extracellular Matrix in an Alginate/Gelatin-Based Bioink by Extrusion Bioprinting for Infection and Transduction Studies. International Journal of Molecular Sciences. 2018; 19 (10): 3129. doi: 10.3390/ijms19103129.

24. Yan LP, Wang YJ, Ren L, Wu G, Caridade SG, Fan JB et al. Genipin-cross-linked collagen/chitosan biomimetic scaffolds for articular cartilage tissue engineering applications. J Biomed Mater Res A. 2010; 95 (2): 465-475. doi: 10.1002/jbm.a.32869. PMID: 20648541.

25. Bi L, Cao Z, Hu Y, Song Y, Yu L, Yang B et al. Effects of different cross-linking conditions on the properties of genipin-cross-linked chitosan/collagen scaffolds for cartilage tissue engineering. J Mater Sci Mater Med. 2011; 22 (1): 51-62. doi: 10.1007/s10856-010-4177-3. PMID: 21052794.

26. Kajave NS, Schmitt T, Nguyen TU, Kishore V. Dual crosslinking strategy to generate mechanically viable cell-laden printable constructs using methacrylated collagen bioinks. Mater Sci Eng C Mater Biol Appl. 2020; 107: 110290. doi: 10.1016/j.msec.2019.110290. PMID: 31761199.

27. Diamantides N, Dugopolski C, Blahut E, Kennedy S, Bonassar LJ. High density cell seeding affects the rheology and printability of collagen bioinks. Biofabrication. 2019; 11 (4): 045016. doi: 10.1088/1758-5090/ab3524. PMID: 31342915.

28. Ren X, Wang F, Chen C, Gong X, Yin L, Yang L. Engineering zonal cartilage through bioprinting collagen type II hydrogel constructs with biomimetic chondrocyte density gradient. BMC Musculoskelet Disord. 2016; 17: 301. doi: 10.1186/s12891-016-1130-8. PMID: 27439428.

29. Mazzocchi A, Devarasetty M, Huntwork R, Soker S, Skardal A. Optimization of collagen type I-hyaluronan hybrid bioink for 3D bioprinted liver microenvironments. Biofabrication. 2018; 11 (1): 015003. doi: 10.1088/1758-5090/aae543. PMID: 30270846.

30. Lee J, Kim G. Three-Dimensional Hierarchical Nano-fibrous Collagen Scaffold Fabricated Using Fibrillated Collagen and Pluronic F-127 for Regenerating Bone Tissue. ACS Appl Mater Interfaces. 2018; 10 (42): 35801-35811. doi: 10.1021/acsami.8b14088. PMID: 30260631.

31. Correia CR, Moreira-Teixeira LS, Moroni L, Reis RL, van Blitterswijk CA, Karperien M et al. Chitosan scaffolds containing hyaluronic acid for cartilage tissue engineering. Tissue Eng Part C Methods. 2011; 17 (7): 717-730. doi: 10.1089/ten.tec.2010.0467.

32. Stichler S, Bock T, Paxton N, Bertlein S, Levato R, Schill V et al. Double printing of hyaluronic acid/poly(glycidol) hybrid hydrogels with poly(e-caprolactone) for MSC chondrogenesis. Biofabrication. 2017; 9 (4): 044108. doi: 10.1088/1758-5090/aa8cb7. PMID: 28906257.

33. Sakai S, Ohi H, Taya M. Gelatin/Hyaluronic Acid Content in Hydrogels Obtained through Blue Light-Induced Gelation Affects Hydrogel Properties and Adipose Stem Cell Behaviors. Biomolecules. 2019; 9 (8): 342. doi: 10.3390/biom9080342. PMID: 31387235.

34. Mazzocchi A, Devarasetty M, Huntwork RC, Soker S, Skardal A. Optimization of collagen type I-hyaluronan hybrid bioink for 3D bioprinted liver microenvironments. Biofabrication. 2018; 11 (1), 015003. doi: 10.1088/1758-5090/aae543. PMID: 30270846.

35. Intini C, Elviri L, Cabral J, Mros S, Bergonzi C, Bianchera A et al. 3D-printed chitosan-based scaffolds: An in vitro study of human skin cell growth and an in-vivo wound healing evaluation in experimental diabetes in rats. Carbohydr Polym. 2018; 199: 593-602. doi: 10.1016/j.carbpol.2018.07.057. PMID: 30143167.

36. Elviri L, Foresti R, Bergonzi C, Zimetti F, Marchi C, Bianchera A et al. Highly defined 3D printed chitosan scaffolds featuring improved cell growth. Biomed Mater. 2017; 12 (4): 045009. doi: 10.1088/1748-605X/aa7692. PMID: 30143167.

37. Daly AC, Critchley SE, Rencsok EM, Kelly DJ. A comparison of different bioinks for 3D bioprinting of fibrocartilage and hyaline cartilage. Biofabrication. 2016; 8 (4): 045002. doi: 10.1088/1758-5090/8/4/045002. PMID: 27716628.

38. Bertassoni LE, Cecconi M, Manoharan V, Nikkhah M, Hjortnaes J, Cristino AL et al. Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs. Lab Chip. 2014; 14 (13): 22022211. doi: 10.1039/c4lc00030g. PMID 24860845.

39. Ke D, Yi H, Est-Witte S, George SK, Kengla CV, Ata-la A et al. Bioprinted trachea constructs with patient matched design, mechanical and biological properties. Biofabrication. 2019; 12 (1). doi: 10.1088/1758-5090/ab5354. PMID: 31671417.

40. Romanazzo S, Vedicherla S, Moran C, Kelly DJ. Meniscus ВКМ-functionalised hydrogels containing infrapatellar fat pad-derived stem cells for bioprinting of regionally defined meniscal tissue. J Tissue Eng Regen Med. 2018; 12: e1826-e1835. doi: 10.1002/term.2602. PMID: 29105354.

41. Kaye R, Goldstein T, Grande DA, Zeltsman D, Smith LP. A 3-dimensional Bioprinted Tracheal Segment Implant Pilot Study: Rabbit Tracheal Resection With Graft Implantation. Int J Pediatr Otorhinolaryngol. 2019; 117: 175-178. doi: 10.1016/j.ijporl.2018.11.010. PMID: 30579077.

42. Пузаков КК, Матюшкина ОЛ, Капризова МВ, Карпов МЕ, Зуева АВ, Турапина АА и др. Влияние скаффолдов на основе поликапролактона на регенерацию гиалинового хряща при индуцированном повреждении. Евразийское научное объединение. 2018; 12-3 (46): 181-183.

43. Li R, Chen KL, Wang Y, Liu YS, Zhou YS, Sun YC. Establishment of a 3D Printing System for Bone Tissue Engineering Scaffold Fabrication and the Evaluation of Its Controllability Over Macro and Micro Structure Precision. Beijing Da Xue Xue Bao Yi Xue Ban. 2019; 51 (1): 115-119. doi: 10.19723/j.issn.1671-167X.2019.01.021. PMID: 30773555.

44. Narayanan LK, Huebner P, Fisher MB, Spang JT, Star-ly B, Shirwaiker RA. 3D-bioprinting of polylactic acid (PLA) nanofiber-alginate hydrogel bioink containing human adipose-derived stem cells. ACS Biomater Sci Eng. 2016; 2 (10): 1732-1742.

45. Копелев ПВ, Нащекина ЮА, Александрова СА. Оценка жизнеспособности хондроцитов кролика при культивировании на полилактидных скаффолдах, предназначенных для тканевой инженерии хрящевой ткани. Бюллетень инновационных технологий. 2017; 1. 2 (2): 31-35.

46. Herrera J, Henke CA, Bitterman PB. Extracellular matrix as a driver of progressive fibrosis. J Clin Invest. 2018; 128 (1): 45-53. doi: 10.1172/JCI93557. PMID: 29293088.

47. Theocharis AD, Skandalis SS, Gialeli C, Karama-nos NK. Extracellular matrix structure. Adv Drug Deliv Rev. 2016; 97: 4-27. doi: 10.1016/j.addr.2015.11.001. PMID 26562801.

48. Gasperini L, Mano JF, Reis RL. Natural polymers for the microencapsulation of cells. J R Soc Interface. 2014; 11 (100): 20140817. doi: 10.1098/rsif.2014.0817. PMID 25232055.

49. Lopez-Marcial GR, Zeng AY, Osuna C, Dennis J, Garda JM, O'Connell GD. Agarose-based hydrogels as suitable bioprinting materials for tissue engineering. ACS Biomater Sci Eng. 2018; 4 (10): 3610-3616. doi: 10.1021/acsbiomaterials.8b00903.

50. Amoabediny Gh, Salehi-Nik N, Heli B. The role of biodegradable engineered scaffold in tissue engineering. Biomaterials Science and Engineering. Ed. by Pignatello R. InTech; 2011; 153-172.

51. Pawar SN, Edgar KJ. Alginate derivatization: A review of chemistry, properties and applications. Biomaterials. 2012; 33: 3279-3305. doi: 10.1016/j.biomateri-als.2012.01.007. PMID 22281421.

52. Axpe E, Oyen ML. Applications of Alginate-Based Bioinks in 3D Bioprinting. Int J Mol Sci. 2016; 17 (12). doi: 10.3390/ijms17121976. PMID 27898010.

53. Wang X. Advanced Polymers for Three-Dimensional (3D) Organ Bioprinting. Micromachines (Basel). 2019; 10 (12): 814. doi: 10.3390/mi10120814.

54. Lee KY, Mooney DJ. Alginate: properties and biomedical applications. Prog Polym Sci. 2012; 37 (1): 106-126.

55. Bradic B, Bajec D, Pohar A, Novak U, Likozar B. A reaction-diffusion kinetic model for the heterogeneous N-deacetylation step in chitin material conversion to chitosan in catalytic alkaline solutions. Reaction Chemistry & Engineering. 2018; 6.

56. Younes I, Rinaudo M. Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar Drugs. 2015; 13 (3): 1133-1174. doi: 10.3390/md13031133. PMID 25738328.

57. Li S, Tian X, Fan J, Tong H, Ao Q, Wang X. Chitosans for Tissue Repair and Organ Three-Dimensional (3D) Bioprinting. Micromachines (Basel). 2019; 10 (11). doi: 10.3390/mi10110765.

58. Kean T, Thanou M. Biodegradation, biodistribution and toxicity of chitosan. Advanced Drug Delivery Reviews. 2010; 62 (1): 3-11. doi: 10.1016/j.addr.2009.09.004.

59. Rao SB, Sharma CP. Use of chitosan as a biomaterial: studies on its safety and hemostatic potential. J Biomed Mater Res. 1997; 34: 21-28.

60. Shahidi F, Abuzaytoun R. Chitin, chitosan, and co-products: chemistry, production, applications, and health effects. Adv Food Nurt Res. 2005; 49: 93-135.

61. Khor E, Lm LY. Implantable applications of chitin and chitosan. Biomaterials. 2003; 24 (13): 2339-2349.

62. Sahariah P, Masson M. Antimicrobial Chitosan and Chitosan Derivatives: A Review of the Structure-Activity Relationship. Biomacromolecules. 2017; 18: 38463868.

63. Chircov C, Grumezescu AM, Bejenaru LE. Hyaluronic Acid-Based Scaffolds for Tissue Engineering. Rom J Morphol Embryol. 2018; 59 (1): 71-76. PMID: 29940614.

64. Sze JH, Brownlie JC, Love CA. Biotechnological production of hyaluronic acid: a mini review. 3 Biotech. 2016; 6 (1). doi: 10.1007/s13205-016-0379-9. PMID: 28330137.

65. Hemshekhar M, Thushara RM, Chandranayaka S, Sherman LS, Kemparaju K, Girish KS. Emerging roles of hyaluronic acid bioscaffolds in tissue engineering and regenerative medicine. International Journal of Biological Macromolecules. 2016; 86: 917-919. doi: 10.1016/j.ijbiomac.2016.02.032. PMID: 26893053.

66. Poldervaart MT, Goversen B, de Ruijter M, Abbadessa A, Ferry PWM, Oner FC et al. 3D bioprinting of methacrylated hyaluronic acid (MeHA) hydrogel with intrinsic osteogenicity. PLoS One. 2017; 12 (6): e0177628. doi: 10.1371/journal.pone.0177628. PMID: 28586346.

67. Choi YJ, Yi HG, Kim SW, Cho DW. 3D Cell Printed Tissue Analogues: A New Platform for Theranostics. Theranostics. 2017; 7 (12): 3118-3137. doi: 10.7150/thno.19396. PMID: 28839468.

68. Antich C, Vicente J, Jimenez G, Chocarro C, Carrillo E, Montanez E et al. Bioinspired Hydrogel Composed of Hyaluronic Acid and Alginate as a Potential Bioink for 3D Bioprinting of Articular Cartilage Engineering Constructs. Acta Biomater. 2020. doi: 10.1016/j.act-bio.2020.01.046. PMID: 32027992.

69. Dong C, Lv Y. Application of Collagen Scaffold in Tissue Engineering: Recent Advances and New Perspectives. Polymers. 2016; 8 (2): 42. doi: 10.3390/polym8020042. PMID: 30979136.

70. Heo J, Koh RH, Shim W, Kim HD, Yim HG, Hwang NS. Riboflavin-induced photo-crosslinking of collagen hydrogel and its application in meniscus tissue engineering. Drug Deliv Translational Res. 2016; 6: 148-158. doi: 10.1007/s13346-015-0224-4. PMID: 25809935.

71. Khoirunnisa DH, Rukmana TI. Isolation and characteristics of bovine skin gelatin and analysis of glycine, proline, and hydroxyproline by high-performance liquid chromatography-fluorescence. International Journal of Applied Pharmaceutics. 2018; 10 (1): 269. doi: 10.22159/ijap.2018.v10s1.60.

72. Setayeshmehr M, Esfandiari E, Rafieinia M, Hashemibeni B, Taheri-Kafrani A, Samadikuchaksaraei A et al. Hybrid and Composite Scaffolds Based on Extracellular Matrices for Cartilage Tissue Engineering. Tissue Eng Part B Rev. 2019; 25 (3): 202-224. doi: 10.1089/ten.TEB.2018.0245. PMID: 30648478.

73. Яценко АА, Кушнарев ВА, Леонов ДВ, Устинов ЕМ, Целуйко СС. Изучение морфологических и биодеградируемых свойств пористого скаффолда желатина для использования в тканевой инженерии легких. Бюллетень физиологии и патологии дыхания. 2019; 72: 66-72.

74. Melke J, Midha S, Ghosh S, Ito K, Hofmann S. Silk fibroin as biomaterial for bone tissue engineering. Acta Biomater. 2016; 31: 1-16. doi: 10.1016/j.act-bio.2015.09.005. PMID 26360593.

75. Meng Z, Zheng X, Tang K, Liu J, Qin S. Dissolution of natural polymers in ionic liquids: A review. e-Polymers. 2012; 12 (1). doi: 10.1515/epoly.2012.12.1.317.

76. Kim SH, Yeon YK, Lee JM, Chao JR, Lee YJ, Seo YB et al. Publisher Correction: Precisely printable and biocompatible silk fibroin bioink for digital light processing 3D printing. Nat Commun. 2018; 9 (1): 2350. doi: 10.1038/s41467-018-04517-w. PMID: 29891952.

77. Cao Y, Wang B. Biodegradation of silk biomaterials. Int J Mol Sci. 2009; 10 (4): 1514-1524. doi: 10.3390/ijms10041514. PMID: 19468322.

78. Correia C, Bhumiratana S, Yan LP, Oliveira AL, Gimble JM, Rockwood D et al. Development of silk-based scaffolds for tissue engineering of bone from human adipose-derived stem cells. Acta Biomater. 2012; 8 (7): 2483-2492.

79. Багров ДВ, Жуйков ВА, Чудинова ЮВ, Ярышева АЮ, Котлярова МС, Архипова АЮ и др. Механические свойства пленок и трехмерных матриксов из фиброина шелка и желатина. Биофизика. 2017; 62 (1): 23-30.

80. Басок ЮБ, Кириллова АД, Григорьев АМ, Кирсанова АД, Немец ЕА, Севастьянов ВИ. Получение микродисперсного тканеспецифического децеллюляризованного матрикса из суставного хряща свиньи. Перспективные материалы. 2020; 5: 51-60.

81. Немец ЕА, Лажко АЭ, Басок ЮБ, Кирсанова ЛА, Кириллова АД, Севастьянов ВИ. Особенности получения тканеспецифического матрикса из децеллюляризованного хряща свиньи. Сверхкритические флюиды. Теория и практика. 2020; 15 (2): 3-13.

82. Pati F, Ha DH, Jang J, Han HH, Rhie JW, Cho DW. Biomimetic 3D tissue printing for soft tissue regeneration. Biomaterials. 2015; 62: 164-175. doi: 10.1016/j.biomaterials.2015.05.043.

83. Kaye R, Goldstein T, Grande DA, Zeltsman D, Smith LP. A 3-dimensional bioprinted tracheal segment implant pilot study: rabbit tracheal resection with graft implantation. Int J Pediatr Otorhinolaryngol. 2019; 117; 175-178. doi: 10.1016/j.ijporl.2018.11.010. PMID: 30579077.

84. Joo YS, Cha JR, Gong MS. Biodegradable shape-memory polymers using polycaprolactone and isosorbide based polyurethane blends. Mat Sci Eng. 2018; 91: 426435. doi: 10.1016/j.msec.2018.05.063.

85. Malikmammadov E, Tanir TE, Kiziltay A, Hasirci V, Hasirci N. PCL and PCL-based materials in biomedical applications. Journal of Biomaterials Science, Polymer Edition. 2017; 29 (7-9): 863-893. doi: 10.1080/09205063.2017.1394711. PMID: 29053081.

86. Li X, Cui R, Sun L, Aifantis KE, Fan Y, Feng Q et al. 3D-Printed Biopolymers for Tissue Engineering Application. International Journal of Polymer Science. 2014; 2014: 1-13. doi: 10.1155/2014/829145.

87. Shim JH, Jang KM, Hahn SK, Park JY, Jung H, Oh K et al. Three-dimensional bioprinting of multilayered constructs containing human mesenchymal stromal cells for osteochondral tissue regeneration in the rabbit knee joint. Biofabrication. 2016; 8 (1): 014102. doi: 10.1088/1758-5090/8/1/014102. PMID: 26844597.

88. Griffith LG. Polymeric biomaterials. Acta Materialia. 2000; 48 (1): 263-277. doi: 10.1016/s1359-6454(99)00299-2.

89. Farah S, Anderson DG, Langer R. Physical and mechanical properties of PLA, and their functions in widespread applications - A comprehensive review. Advanced Drug Delivery Reviews. 2016; 107: 367-392. doi: 10.1016/j.addr.2016.06.012. PMID: 27356150.

90. Sheikh Z, Najeeb S, Khurshid Z, Verma V, Rashid H, Glogauer M. Biodegradable materials for bone repair and tissue engineering applications. Materials (Basel). 2015; 8 (9): 5744-5794. doi: 10.3390/ma8095273. PMID: 28793533.

91. Mir M, Ahmed N, Rehman A. Recent applications of PLGA based nanostructures in drug delivery. Colloids Surf B Biointerfaces. 2017; 159: 217-231. doi: 10.1016/j.colsurfb.2017.07.038. PMID: 28797972.

92. Casalini T, Rossi F, Castrovinci A, Perale G. A Perspective on Polylactic Acid-Based Polymers Use for Nanoparticles Synthesis and Applications. Front Bioeng Biotechnol. 2019; 7: 259. doi: 10.3389/fbioe.2019.00259 PMID: 31681741.

93. Rezvantalab S, Keshavarz Moraveji M. Microfluidic assisted synthesis of PLGA drug delivery systems. RSC Advances. 2019; 9 (4): 2055-2072. doi: 10.1039/c8ra08972h.

94. Hu X, Man Y, Li W, Li L, Xu J, Parungao R et al. 3D Bio-Printing of CS/Gel/HA/Gr Hybrid Osteochondral Scaffolds. Polymers (Basel). 2019; 11 (10). doi: 10.3390/polym11101601. PMID: 31574999.

95. Avila HM, Schwarzc S, Rotter N, Gatenholma P. 3D bioprinting of human chondrocyte-laden nanocellulose hydrogels for patient-specific auricular cartilage regeneration. Bioprinting. 2016; 1-2: 22-35. doi: 10.1016/j.bprint.2016.08.003.

96. Law N, Doney B, Glover H, Qin Y, Aman ZM, Sercombe TB et al. Characterisation of hyaluronic acid methylcellulose hydrogels for 3D bioprinting. Journal of the Mechanical Behavior of Biomedical Materials. 2018; 77: 389-399. doi: 10.1016/j.jmbbm.2017.09.031. PMID: 29017117.

97. Sayyar S, Gambhir S, Chung J, Officer DL, Wallace GG. 3D printable conducting hydrogels containing chemically converted graphene. Nanoscale. 2017; 9 (5): 2038-2050. doi: 10.1039/c6nr07516a. PMID: 28112762.

98. Xavier JR, Thakur T, Desai P, Jaiswal MK, Sears N, Cosgriff-Hernandez E et al. Bioactive nanoengineered hydrogels for bone tissue engineering: a growth-factor-free approach. ACS Nano. 2015; 9 (3): 3109-3118. doi: 10.1021/nn507488s. PMID: 25674809.

99. Muller M, Ozturk E, Arlov 0, Gatenholm P, Zenobi-Wong M. Alginate Sulfate-Nanocellulose Bioinks for Cartilage Bioprinting Applications. Ann Biomed Eng. 2016; 45: 210-223. doi: 10.1007/s10439-016-1704-5. PMID: 27503606.

100. Gao M, Zhang H, Dong W, Bai J, Gao B, Xia D et al. Tissue-engineered trachea from a 3D-printed scaffold enhances whole-segment tracheal repair. Scientific Reports. 2017; 7.

101. Fitzsimmons R, Aquilino MS, Quigley J, Chebotarev O, Tarlan F, Simmons CA. Generating vascular channels within hydrogel constructs using an economical opensource 3D bioprinter and thermoreversible gels. Bioprinting. 2018; 9: 7-18. doi: 10.1016/j.bprint.2018.02.001.

102. Li S, Liu YY, Liu LJ, Hu QX. A Versatile Method for Fabricating Tissue Engineering Scaffolds with a Three-Dimensional Channel for Prevasculature Networks. ACS Appl Mater Interfaces. 2016; 8 (38): 25096-25103. doi: 10.1021/acsami.6b07725.

103. Kolesky DB, Truby RL, Gladman AS, Busbee TA, Homan KA, Lewis JA. 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv Mater. 2014; 26 (19): 3124-3130. doi: 10.1002/adma.201305506. PMID: 24550124.

104. Ortega I, Dew L, Kelly AG, Chong CK, MacNeil S, Claeyssens F. Fabrication of biodegradable synthetic perfusable vascular networks via a combination of electrospinning and robocasting. Biomater Sci. 2015; 3 (4): 592-596. doi: 10.1039/c4bm00418c.

105. Lee VK, Lanzi AM, Haygan N, Yoo SS, Vincent PA, Dai G. Generation of Multi-Scale Vascular Network System within 3D Hydrogel using 3D Bio-Printing Technology. Cell Mol Bioeng. 2014; 7 (3): 460-472. doi: 10.1007/s12195-014-0340-0. PMID: 25484989.

106. Fan C, Wang DA. Effects of Permeability and Living Space on Cell Fate and Neo-Tissue Development in Hydrogel-Based Scaffolds: A Study With Cartilaginous Model. Macromol Biosci. 2015; 15 (4): 535-545. doi: 10.1002/mabi.201400453. PMID: 25557976.

107. Leong W, Kremer A, Wang DA. Development of size-customized hepatocarcinoma spheroids as a potential drug testing platform using a sacrificial gelatin microsphere system. Mater Sci Eng C Mater Biol Appl. 2016; 63: 644-649. doi: 10.1016/j.msec.2016.03.046. PMID: 27040260.

108. Sung KE, Su G, Pehlke C, Trier SM, Eliceiri KW, Keely PJ et al. Control of 3-dimensional Collagen Matrix Polymerization for Reproducible Human Mammary Fibroblast Cell Culture in Microfluidic Devices. Biomaterials. 2009; 30 (27): 4833-4841. doi: 10.1016/j.biomaterials.2009.05.043. PMID: 19540580.

109. Doyle AD. Generation of 3D Collagen Gels With Controlled Diverse Architectures. Curr Protoc Cell Biol. 2016; 72. doi: 10.1002/cpcb.9. PMID: 27580704.

110. Naciri M, Kuystermans D, Al-Rubeai M. Monitoring pH and Dissolved Oxygen in Mammalian Cell Culture Using Optical Sensors. Cytotechnology. 2008; 57 (3): 245-250. doi: 10.1007/s10616-008-9160-1. PMID: 19003181.

111. Kim YB, Lee H, Kim GH. Strategy to achieve highly porous/biocompatible macroscale cell blocks, using a collagen/genipin-bioink and an optimal 3D printing. Process ACS Appl Mater Interfaces. 2016; 8 (47): 32230-40. doi: 10.1021/acsami.6b11669. PMID: 27933843.

112. Yeo MG, Kim GH. A cell-printing approach for obtaining hASC-laden scaffolds by using a collagen/polyphenol bioink. Biofabrication. 2017; 9 (2): 025004. doi: 10.1088/1758-5090/aa6997. PMID: 28402968.

113. Dimida S, Barca A, Cancelli N, De Benedictis V, Rauc-ci MG, Demitri C. Effects of Genipin Concentration on Cross-Linked Chitosan Scaffolds for Bone Tissue Engineering: Structural Characterization and Evidence of Biocompatibility Features. International Journal of Polymer Science. 2017; 2017. doi: 10.1155/2017/8410750.

114. Drzewiecki KE, Malavade JN, Ahmed I, Lowe CJ, Shrei-ber DI. A thermoreversible, photocrosslinkable collagen bio-ink for free-form fabrication of scaffolds for regenerative medicine. Technology (Singap World Sci). 2017; 5 (4): 185-195. doi: 10.1142/S2339547817500091. PMID: 29541655.

115. Parak A, Pradeep P, du Toit L, Kumar P, Choonara Y, Pillay V. Functionalizing bioinks for 3D bioprinting applications. Drug Discov Today. 2019; 24 (1): 198-205. doi: 10.1016/j.drudis.2018.09.012.

116. Hersel U, Dahmen C, Kessler H. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials. 2003; 24 (24): 4385-4415. doi: 10.1016/s0142-9612(03)00343-0.

117. Diamantides N, Wang L, Pruiksma T, Siemiatkoski J, Dugopolski C, Shortkroff S et al. Correlating rheological properties and printability of collagen bioinks: the effects of riboflavin photocrosslinking and pH. Biofabrication. 2017; 9 (3): 034102. doi: 10.1088/1758-5090/aa780f. PMID: 28677597.

118. Batchelor R, Kwandou G, Spicer P, Stenzel M. Riboflavin (vitamin B2) and flavin mononucleotide as visible light photo initiators in the thiolene polymerisation of PEG-based hydrogels. Polym Chem. 2017; 8 (6): 980984. doi: 10.1039/c6py02034h.

119. Das S, Pati F, Choi YJ, Rijal G, Shim JH, Kim SW et al. Bioprintable, cell-laden silk fibroin-gelatin hydrogel supporting multilineage differentiation of stem cells for fabrication of three-dimensional tissue constructs. Acta Biomater. 2015; 11: 233-246. doi: 10.1016/j.act-bio.2014.09.023. PMID: 25242654.

120. Skardal A, Devarasetty M, Kang HW, Mead I, Bishop C, Shupe T et al. A Hydrogel Bioink Toolkit for Mimicking Native Tissue Biochemical and Mechanical Properties in Bioprinted Tissue Constructs. Acta Biomater. 2015; 25: 24-34. doi: 10.1016/j.actbio.2015.07.030. PMID: 26210285.

121. Cellink.com [Internet]. CELLINK series [updated 2020 March 18; cited 2020 March 18]. Available from: https://cellink.com/global/bioinks/cellink-series/.

122. Advanced BioMatrix [Internet]. Innovative 3D Matrices for Breakthrough Research. [updated 2020 March 18; cited 2020 March 18]. Available from: https://advanced-biomatrix.com/.

123. Biogelx [Internet]. BIOMIMETIC PEPTIDE BIOINKS [updated 2020 February 28; cited 2020 February 28]. Available from: https://www.biogelx.com/3d-bioprinting-organs-2/.

124. ISTO Technologies Inc [Internet]. RevaFlex™ Regenerative Cartilage Technology. [updated 2020 April 5; cited 2020 April 5]. Available from: http://istotechnolo-giesinc.com/revaflex.

125. Aesculap Biologics LLC [Internet]. NOVOCART 3D. [updated 2020 April 5; cited 2020 April 5]. Available from: https://www.aesculapbiologics.com/en/patients/novocart-3d.html.

126. MACI [Internet]. MACI® (autologous cultured chondrocytes on porcine collagen membrane). [updated 2020 April 5; cited 2020 April 5]. Available from: https://www.maci.com/patients.


Для цитирования:


Аргучинская Н.В., Бекетов Е.Е., Исаева Е.В., Сергеева Н.С., Шегай П.В., Иванов С.А., Каприн А.Д. Материалы для создания тканеинженерных конструкций методом 3D-биопечати при восстановлении хрящевой и мягких тканей. Вестник трансплантологии и искусственных органов. 2021;23(1):60-74. https://doi.org/10.15825/1995-1191-2021-1-60-74

For citation:


Arguchinskaya N.V., Beketov E.E., Isaeva E.V., Sergeeva N.S., Shegay P.V., Ivanov S.A., Kaprin A.D. Materials for creating tissue-engineered constructs using 3D bioprinting: cartilaginous and soft tissue restoration. Russian Journal of Transplantology and Artificial Organs. 2021;23(1):60-74. (In Russ.) https://doi.org/10.15825/1995-1191-2021-1-60-74

Просмотров: 103


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1995-1191 (Print)
ISSN 2412-6160 (Online)