Hydrodynamic performance of a novel suturelessprosthetic aortic valve
https://doi.org/10.15825/1995-1191-2020-2-117-124
Abstract
The aim of the study was an in vitro hydrodynamic study of the developed prosthetic heart valve of the second generation, designed to carry out an implantation using «valve-in-valve» method. Material and methods. Prototypes of the developed prosthesis were studied under simulated physiological conditions of the heart using a Vivitro Labs pulse duplicator (Canada) in a comparative aspect with «UniLine» clinical commercial aortic valve bioprosthesis (Russia). Samples were tested by simulating sutureless implantation procedure. Results. The developed valves showed satisfactory hydrodynamic characteristics – for all cases of «implantation» from the position of the average trans-prosthetic gradient (6.1–11.1 mm Hg) and the effective orifice area (1.60–1.81 cm2 ). The analysis of the regurgitation fraction allowed us to determine the optimal sizes for implantation using «valvein-valve» method, which subsequently will form the basis of sizing guidelines for size selection. A qualitative analysis of the leaflet’s work demonstrated the presence of slight asymmetry for a number of prostheses – in case of mismatch of sizes when simulating «valve-in-valve» procedure. Conclusion. The tests demonstrate the viability of the developed design from the standpoint of hydrodynamic efficiency and determines the basic rules of selecting a prosthesis for reimplantation relative to the primary valve.
About the Authors
K. Yu. KlyshnikovRussian Federation
Kirill Klyshnikov
Address: 6, Sosnovy Boulevard, Kemerovo, 650002, Russian Federation. Tel. (923) 516-68-66
E. A. Ovcharenko
Russian Federation
Yu. A. Kudryavtseva
Russian Federation
L. S. Barbarash
Russian Federation
References
1. Bokeriya LA, Gudkova RG. Serdechno-sosudistaya khirurgiya – 2015. Bolezni i vrozhdennye anomalii sistemy krovoobrashcheniya [Tekst]; Sektsiya po serdechno-sosudistoy khirurgii uchenogo soveta Ministerstva zdravookhraneniya Rossiyskoy Federatsii [i dr.]. M.: Izd-vo NTsSSKh im. A.N. Bakuleva RAMN, 2002– 2015. 225.
2. Rogulina NV, Odarenko YuN, Kokorin SG, Barbarash LS. Mekhanicheskie i biologicheskie protezy v khirurgii izolirovannogo poroka aortal’nogo klapana. Evraziyskiy kardiologicheskiy zhurnal. 2016; 3: 42–43.
3. Odarenko YuN, Kokorin SG, Stasev AN, Rogulina NV, Burago AYu, Barbarash LS. 25-letniy opyt primeneniya ksenoaortal’nykh epoksiobrabotannykh bioprotezov v khirurgii mitral’nykh porokov. Evraziyskiy kardiologicheskiy zhurnal. 2016; 3: 45–46.
4. Kudryavtseva YuA, Nasonova MV, Akent’eva TN, Burago AYu, Zhuravleva IYu. Rol’ shovnogo materiala v kal’tsifikatsii kardiovaskulyarnykh bioprotezov. Kompleksnye problemy serdechnososudistykh zabolevaniy. 2013; 4: 22–27.
5. Nishimura RA, Otto CM, Bonow RO, Carabello BA, Erwin JP 3rd, Guyton RA et al. ACC/AHA Task Force Members. 2014 AHA/ACC Guideline for the Management of Patients With Valvular Heart Disease: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2014; 129 (23): 2440–2492. doi: 10.1161/CIR.0000000000000029.
6. Klyshnikov KYu, Ovcharenko EA, Kudryavtseva YuA, Barbarash LS. Reprotezirovanie klapanov serdtsa po metodike «protez-vprotez». Rossiyskiy kardiologicheskiy zhurnal. 2016; 11 (139): 73–80. doi: 10.15829/1560-4071-2016-11-73-80.
7. Balsam LB, Grossi EA, Greenhouse DG, Ursomanno P, Deanda A, Ribakove GH et al. Reoperative valve surgery in the elderly: predictors of risk and long-term survival. Ann Thorac Surg. 2010; 90 (4): 1195–1200. doi: 10.1016/j.athoracsur.2010.04.057.
8. Maganti M, Rao V, Armstrong S, Feindel CM, Scully HE, David TE. Redo valvular surgery in elderly patients. Ann Thorac Surg. 2009; 87 (2): 521–525. doi: 10.1016/j.athoracsur.2008.09.030.
9. Imaev TE, Komlev AE, Kolegaev AS i dr. Sovremennoe sostoyanie problemy transkateternogo reprotezirovaniya klapanov serdtsa po metodike «klapan-v-klapan». Consilium Medicum. 2016; 18 (5): 89–92.
10. Regeer M, Merkestein L, de Weger A, Kamperidis V, van der Kley F, van Rosendael P et al. Left bundle branch block after sutureless, transcatheter, and stented biological aortic valve replacement for aortic stenosis. EuroIntervention. 2017; 12 (13): 1660–1666.
11. Alekyan BG, Grigor’yan AM, Staferov AV, Karapetyan NG. Rentgenendovaskulyarnaya diagnostika i lechenie zabolevaniy serdtsa i sosudov v Rossiyskoy Federatsii – 2017 god. Endovaskulyarnaya khirurgiya. 2018. 5 (2): 93–240. doi: 10.24183/2409- 4080-2018-5-2-93-240.
12. Barbarash LS, Klyshnikov KYu, Ovcharenko EA, Stasev AN, Kokorin SG. Patent na PM «Biologicheskiy protez dlya reprotezirovaniya klapanov serdtsa» № 156774. Opubl. 20.11.2015. Byul. № 32: 11–13.
13. Ovcharenko EA, Klyshnikov KYu, Savrasov GV, Glushkova TV, Barbarash LS. Issledovanie gidrodinamicheskoy funktsii maloinvazivnogo bioproteza klapana aorty. Kompleksnye problemy serdechno-sosudistykh zabolevaniy. 2016; 5 (2): 39–45.
14. Jeewandara TM, Wise SG, Ng MKC. Biocompatibility of Coronary Stents. Materials. 2014; 7 (2): 769–786. doi: 10.3390/ma7020769.
15. Butany J, Collins MJ. Analysis of prosthetic cardiac devices: a guide for the practising pathologist. J Clin Pathol. 2005 Feb; 58 (2): 113–124. Review.
16. Soares SJ, Feaver KR, Zhang W, Kamensky D, Aggarwal A, Sacks MS. Biomechanical Behavior of Bioprosthetic Heart Valve Heterograft Tissues: Characterization, Simulation, and Performance. Cardiovasc Eng Technol. 2016; 7 (4): 309–351. doi: 10.1007/s13239-016-0276-8.
17. Avanzini A, Battini D. Structural analysis of a stented pericardial heart valve with leaflets mounted externally. Proc Inst Mech Eng H. 2014 Oct; 228 (10): 985–995. doi: 10.1177/0954411914552309. Epub 2014 Sep 23. PubMed PMID: 25252695.
18. Martin C, Sun W. Simulation of long-term fatigue damage in bioprosthetic heart valves: effects of leaflet and stent elastic properties. Biomech Model Mechanobiol. 2014 Aug; 13 (4): 759–770. doi: 10.1007/s10237-013- 0532-x.
19. Marquez S, Hon RT, Yoganathan AP. Comparative hydrodynamic evaluation of bioprosthetic heart valves. J Heart Valve Dis. 2001; 10 (6): 802–811.
20. Bazylev VV, Voevodin AB, Rosseykin EV. Dvukhletniy opyt ispol’zovaniya otechestvennogo transkateternogo proteza aortal’nogo klapana «MEDLAB». Byulleten’ NTsSSKh im. A.N. Bakuleva RAMN «Serdechno-sosudistye zabolevaniya». 2017; 18 (S6): 131.
21. Bapat V. Technical pitfalls and tips for the valve-in-valve procedure. Ann Cardiothorac Surg. 2017; 6 (5): 541– 552. doi: 10.21037/acs.2017.09.13.
22. Reul RM, Ramchandani MK, Reardon MJ. Transcatheter Aortic Valve-in-Valve Procedure in Patients with Bioprosthetic Structural Valve Deterioration. Methodist Debakey Cardiovasc J. 2017; 13 (3): 132–141. doi: 10.14797/mdcj-13-3-132.
23. Dvir D, Webb JG, Bleiziffer S, Pasic M, Waksman R, Kodali S et al. Valve-in-Valve International Data Registry Investigators. Transcatheter aortic valve implantation in failed bioprosthetic surgical valves. JAMA. 2014 Jul; 312 (2): 162–170. doi: 10.1001/jama.2014.7246.
Review
For citations:
Klyshnikov K.Yu., Ovcharenko E.A., Kudryavtseva Yu.A., Barbarash L.S. Hydrodynamic performance of a novel suturelessprosthetic aortic valve. Russian Journal of Transplantology and Artificial Organs. 2020;22(2):117-124. https://doi.org/10.15825/1995-1191-2020-2-117-124