Preview

Вестник трансплантологии и искусственных органов

Расширенный поиск

Фибрин – перспективный материал для тканевой сосудистой инженерии

https://doi.org/10.15825/1995-1191-2020-1-196-208

Аннотация

В данном обзоре свойства фибрина рассматриваются с позиции возможности использования в тканевой сосудистой инженерии (ТСИ). Аутологичный фибрин является одним из самых доступных биополимеров, поскольку с помощью несложных методик может быть получен из периферической крови. В обзоре даны описание и сравнительная характеристика методов и подходов получения фибринового геля. Способности фибрина поддерживать адгезию и миграцию, служить биологической клеточной нишей, контролировать ангиогенез, накапливать и дозированно высвобождать факторы роста являются уникальными и крайне полезными в ТСИ. Огромный потенциал формования позволяет получать сложные трехмерные формы, использовать фибрин как самостоятельный каркас или в качестве модифицирующего покрытия/пропитки. Фибриновые гели способны к полной биодеградации с помощью фибринолиза, но этот процесс должен хорошо контролироваться и быть предсказуемым. В обзоре обсуждаются основные способы регуляции скорости фибринолиза, а также возможные побочные эффекты такого воздействия. Низкая механическая прочность является главным ограничением использования фибрина в качестве основного каркаса в сосудистых протезах. В работе представлены возможные варианты повышения прочностных свойств фибриновой матрицы и дана оценка их эффективности. С учетом всех уникальных свойств и особенностей фибрин вполне может стать основой для идеального полностью аутологичного тканеинженерного сосудистого протеза малого диаметра.

Об авторах

В. Г. Матвеева
ФГБУ «Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний»
Россия

Матвеева Вера Геннадьевна. 

650002, Кемерово, Сосновый бульвар, д. 6.



М. Ю. Ханова
ФГБУ «Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний»
Россия
Кемерово


Л. В. Антонова
ФГБУ «Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний»
Россия
Кемерово


Л. С. Барбараш
ФГБУ «Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний»
Россия
Кемерово


Список литературы

1. Best C, Strouse R, Hor K et al. Toward a patient-specific tissue engineered vascular graft. J Tissue Eng. 2018; 9: 2041731418764709. doi: 10.1177/2041731418764709.

2. Li Y, Meng H, Liu Y, Lee BP. Fibrin Gel as an Injectable Biodegradable Scaffold and Cell Carrier for Tissue Engineering. The Scientific World Journal 2015; Article ID 685690: 10 p. doi: 10.1155/2015/685690.

3. Park CH, Woo KM. Fibrin-Based Biomaterial Applications in Tissue Engineering and Regenerative Medicine. Adv Exp Med Biol. 2018; 1064: 253–261. doi: 10.1007/978-981-13-0445-3_16.

4. Scalcione C, Ortiz-Vaquerizas D, Said DG, Dua HS. Fibrin glue as agent for sealing corneal and conjunctival wound leaks. Eye (Lond). 2018; 32 (2): 463–466. doi: 10.1038/eye.2017.227.

5. Mohan S, John B, Rajan M et al. Glued intraocular lens implantation for eyes with inadequate capsular support: Analysis of the postoperative visual outcome. Indian J Ophthalmol. 2017; 65 (6): 472–476. doi: 10.4103/ijo.IJO_375_16.

6. Bhatnagar D, Bushman JS, Murthy NS et al. Fibrin glue as a stabilization strategy in peripheral nerve repair when using porous nerve guidance conduits. J Mater Sci Mater Med. 2017; 28 (5): 79. doi: 10.1007/s10856-017-5889-4.

7. de Barros CN, Miluzzi Yamada AL et al. A new heterologous fibrin sealant as a scaffold to cartilage repair – Experimental study and preliminary results. Exp Biol Med (Maywood). 2015; 241 (13): 1410–1415. doi: 10.1177/1535370215597192.

8. Reddy KS, Chittoria RK, Babu P et al. Effectiveness of Fibrin Glue in Adherence of Skin Graft. J Cutan Aesthet Surg. 2017; 10 (2): 72–75. doi: 10.4103/JCAS.JCAS_100_16.

9. Morin KT, Tranquillo RT. In vitro models of angiogenesis and vasculogenesis in fibrin gel. Exp Cell Res. 2013; 319 (16): 2409–2417. doi: 10.1016/j.yexcr.2013.06.006.

10. Podolnikova NP, Yakovlev S, Yakubenko VP et al. The interaction of integrin αIIbβ3 with fibrin occurs through multiple binding sites in the αIIb β-propeller domain. J Biol Chem. 2014; 289 (4): 2371–2383. doi: 10.1074/jbc.M113.518126.

11. Aper T, Teebken OE, Steinhoff G, Haverich A. Use of a fibrin preparation in the engineering of a vascular graft model. Eur J Vasc Endovasc Surg. 2004; 28: 296–302. doi: 10.1016/j.ejvs.2004.05.016.

12. Collet JP, Moen JL, Veklich YI et al. The alphaC domains of fibrinogen affect the structure of the fibrin clot, its physical properties, and its susceptibility to fibrinolysis. Blood. 2005; 106 (12): 3824–3830. doi: 10.1182/blood-2005-05-2150.

13. Lim BB, Lee EH, Sotomayor M, Schulten K. Molecular basis of fibrin clot elasticity. Structure. 2008; 16: 449– 459. doi: 10.1016/j.str.2007.12.019.

14. Liu W, Carlisle CR, Sparks EA, Guthold M. The mechanical properties of single fibrin fibers. J Thromb Haemost. 2010; 8: 1030–1036. doi: 10.1111/j.1538-7836.2010.03745.x.

15. Aper T, Wilhelmi M, Gebhardt C et al. Novel method for the generation of tissue-engineered vascular grafts based on a highly compacted fibrin matrix. Acta Biomater. 2016; 29: 21–32. doi: 10.1016/j.actbio.2015.10.012.

16. Dickneite G, Metzner HJ, Kroez M et al. The importance of factor XIII as a component of fibrin sealants. J Surg Res. 2002; 107 (2): 186–195.

17. Mosesson MW. Fibrinogen and fibrin structure and functions. J Thromb Haemost. 2005; 3 (8): 1894–1904. doi: 10.1111/j.1538-7836.2005.01365.x.

18. Siedentop KH, Harris DM, Sanchez B. Autologous fibrin tissue adhesive. Laryngoscope. 1985 Sep; 95 (9 Pt 1): 1074–1076.

19. Ayman E Ismail. Purification of fibrinogen from human plasma. Thromb Res. 1987; 46 (1): 19–27. doi: 10.1016/0049-3848(87)90203-9.

20. Weis-Fogh US. Fibrinogen prepared from small blood samples for autologous use in a tissue adhesive system. Eur Surg Res. 1988; 20 (5–6): 381–389. doi: 10.1159/000128789.

21. Aper T, Kolster M, Hilfiker A et al. Fibrinogen Preparations for Tissue Engineering Approaches. J Bioengineer & Biomedical Sci. 2012, 2: 3. doi: 10.4172/2155-9538.1000115.

22. Almelkar SI, Patwardhan AM, Divate SA et al. Fibrin matrix supports endothelial cell adhesion and migration in culture. OA Biology. 2014; 2 (1): 5.

23. Chlupáč J, Filová E, Riedel T et al. Attachment of human endothelial cells to polyester vascular grafts: pre-coating with adhesive protein assemblies and resistance to shortterm shear stress. Physiol Res. 2014; 63 (2): 167–177.

24. Hasegawa T, Okada K, Takano Y et al. Thrombin-free fibrin coating on small caliber vascular prostheses has high antithrombogenicity in rabbit model. Artif Organs. 2005; 29 (11): 880–886. doi: 10.1111/j.1525-1594.2005.00151.x.

25. Hasegawa T, Okada K, Takano Y et al. Autologous fibrin-coated small-caliber vascular prostheses improve antithrombogenicity by reducing immunologic response. J Thorac Cardiovasc Surg. 2007; 133 (5): 1268–1276, 1276.e1. doi: 10.1016/j.jtcvs.2006.12.049.

26. Chapin JC, Hajjar KA. Fibrinolysis and the control of blood coagulation. Blood Reviews. 2015; 29 (1): 17–24. doi: 10.1016/j.blre.2014.09.003.

27. Eyrich D, Brandl F, Appel B et al. Long-term stable fibrin gels for cartilage engineering. Biomaterials. 2007; 28: 55–65. doi: 10.1016/j.biomaterials.2006.08.027.

28. Hotary KB, Yana I, Sabeh F et al. Matrix metalloproteinases (MMPs) regulate fibrin-invasive activity via MT1-MMP-dependent and -independent processes. J Exp Med. 2002; 195 (3): 295–308. doi: 10.1084/jem.20010815.

29. Linnes MP, Ratner BD, Giachelli CM. A fibrinogenbased precision microporous scaffold for tissue engineering. Biomaterials. 2007; 28 (35): 5298–5306. doi: 10.1016/j.biomaterials.2007.08.020.

30. Mol A, van Lieshout MI, Dam-de Veen CG et al. Fibrin as a cell carrier in cardiovascular tissue engineering applications. Biomaterials. 2005; 26 (16): 3113–3121. doi: 10.1016/j.biomaterials.2004.08.007.

31. Schneider-Barthold C, Baganz S, Wilhelmi M et al. Hydrogels based on collagen and fibrin – frontiers and applications. BioNanoMaterials. 2016; 17 (1–2); 3–12. doi: 10.1515/bnm-2015-0025.

32. Ritchie H, Lawrie LC, Crombie PW et al. Crosslinking of plasminogen activator inhibitor 2 and α2-antiplasmin to fibrin(ogen). J Biol Chem. 2000; 275: 24915–24920. doi: 10.1074/jbc.M002901200.

33. Valnickova Z, Enghild JJ. Human procarboxypeptidase U, or thrombinactivable fibrinolysis inhibitor, is a substrate for transglutaminases: evidence for transglutaminase-catalyzed cross-linking to fibrin. J Biol Chem. 1998; 273: 27220 –27224.

34. Ye Q, Zund G, Benedikt P et al. Fibrin gel as a three dimensional matrix in cardiovascular tissue engineering. Eur J Cardiothorac Surg. 2000; 17: 587–591. doi: 10.1016/s1010-7940(00)00373-0.

35. Grassl ED, Oegema TR, Tranquillo RT. A fibrin-based arterial media equivalent. J Biomed Mater Res. 2003; A 66: 550–561. doi: 10.1002/jbm.a.10589.

36. Mühleder S, Pill K, Schaupper M et al. The role of fibrinolysis inhibition in engineered vascular networks derived from endothelial cells and adipose-derived stem cells. Stem Cell Res Ther. 2018; 12; 9 (1): 35. doi: 10.1186/s13287-017-0764-2.

37. Koutsioumpa M, Hatziapostolou M, Mikelis C et al. Aprotinin stimulates angiogenesis and human endothelial cell migration through the growth factor pleiotrophin and its receptor protein tyrosine phosphatase beta/zeta. Eur J Pharmacol. 2009; 602: 245–249. doi: 10.1016/j.ejphar.2008.11.046.

38. Swartz DD, Russell JA, Andreadis ST. Engineering of fibrin-based functional and implantable small-diameter blood vessels. Am J Physiol Heart Circ Physiol. 2005; 288: H1451–H146070. doi: 10.1152/ajpheart.00479.2004.

39. Barsotti MC, Magera A, Armani C et al. Fibrin acts as biomimetic niche inducing both differentiation and stem cell marker expression of early human endothelial progenitor cells. Cell Prolif. 2011; 44: 33–48. doi: 10.1111/j.1365-2184.2010.00715.x.

40. Almelkar SI, Patwardhan AM, Divate SA et al. Fibrin matrix supports endothelial cell adhesion and migration in culture. OA Biology. 2014; 14: 2 (1): 5.

41. Pajorova J, Bacakova M, Musilkova J et al. Morphology of a fibrin nanocoating influences dermal fibroblast behavior. Int J Nanomedicine. 2018; 13: 3367–3380. doi: 10.2147/IJN.S162644.

42. Voss A, McCarthy MB, Allen D et al. Fibrin Scaffold as a Carrier for Mesenchymal Stem Cells and Growth Factors in Shoulder Rotator Cuff Repair. Arthrosc Tech. 2016; 5 (3): e447–e451. doi: 10.1016/j.eats.2016.01.029.

43. Chiu CL, Hecht V, Duong H et al. Permeability of threedimensional fibrin constructs corresponds to fibrinogen and thrombin concentrations. Biores Open Access. 2012; 1 (1): 34–40.

44. Kurniawan NA, van Kempen TH, Sonneveld S et al. Buffers Strongly Modulate Fibrin Self-Assembly into Fibrous Networks. Langmuir. 2017; 27; 33 (25): 6342–6352.

45. Jockenhoevel S, Chalabi K, Sachweh JS et al. Tissue engineering: complete autologous valve conduit – a new moulding technique. Thorac Cardiovasc Surg. 2001a; 49: 287–290.

46. Discher DE, Janmey P, Wang YL. Tissue cells feel and respond to the stiffness of their substrate. Science. 2005; 310: 1139–1143.

47. Liu W, Jawerth LM, Sparks EA et al. Fibrin fibers have extraordinary extensibility and elasticity. Science. 2006; 313: 634.

48. Guthold M, Liu W, Sparks EA et al. A comparison of the mechanical and structural properties of fibrin fibers with other protein fibers. Cell Biochem Biophys. 2007; 49: 165–181.

49. Feng X, Tonnesen MG, Mousa SA, Clark RA. Fibrin and collagen differentially but synergistically regulate sprout angiogenesis of human dermal microvascular endothelial cells in 3-dimensional matrix. Int J Cell Biol. 2013; 2013: 231279. doi: 10.1155/2013/231279 PMID: 23737792.

50. Reinke JM, Sorg H. Wound repair and regeneration. Eur Surg Res. 2012; 49 (1): 35–43. doi: 10.1159/000339613 PMID: 22797712.

51. Collen A, Hanemaaijer R, Lupu F et al. Membrane-type matrix metalloproteinase-mediated angiogenesis in a fibrin-collagen matrix. Blood. 2003; 101: 1810–1817.

52. Van Hinsbergh VW, Collen A, Koolwijk P. Role of fibrin matrix in angiogenesis. Ann NY Acad Sci. 2001; 936: 426–437.

53. Monroe DM, Hoffman M. The clotting system – a major player in wound healing. Haemophilia. 2012; 18 (5): 11–16.

54. Hadjipanayi E, Kuhn PH, Moog P et al. The Fibrin Matrix Regulates Angiogenic Responses within the Hemostatic Microenvironment through Biochemical Control. PLoS One. 2015; 10 (8): e0135618.

55. Martino MM, Briquez PS, Ranga A, Lutolf MP, Hubbell JA. Heparin-binding domain of fibrin(ogen) binds growth factors and promotes tissue repair when incorporated within a synthetic matrix. Proc NatlAcad Sci USA. 2013; 110 (12): 4563–4568.

56. Schultz GS, Wysocki A. Interactions between extracellular matrix and growth factors in wound healing. Wound Repair Regen. 2009; 17 (2): 153–162.

57. Martino MM, Tortelli F, Mochizuki M et al. Engineering the growth factor microenvironment with fibronectin domains to promote wound and bone tissue healing. Sci Transl Med. 2011; 3 (100): 100ra189. doi: 10.1126/scitranslmed.3002614.

58. Martino MM, Hubbell JA. The 12th–14th type III repeats of fibronectin function as a highly promiscuous growth factor-binding domain. FASEB J. 2010; 24 (12): 4711– 4721. doi: 10.1096/fj.09-151282.

59. Patel SD, Waltham M, Wadoodi A et al. The role of endothelial cells and their progenitors in intimal hyperplasia. Ther Adv Cardiovasc Dis. 2010; 4 (2): 129–141. doi: 10.1177/1753944710362903.

60. Wong CS, Sgarioto M, Owida AA et al. Polyethyleneterephthalate provides superior retention of endothelial cells during shear stress compared to polytetrafluoroethylene and pericardium. Heart Lung Circ. 2006, 15: 371–377. doi: 10.1016/j.hlc.2006.08.002.

61. Post A, Wang E, Cosgriff-Hernandez E. A Review of Integrin-Mediated Endothelial Cell Phenotype in the Design of Cardiovascular Devices. Ann Biomed Eng. 2019; 47: 366. doi: 10.1007/s10439-018-02171-3.

62. Schaufler V, Czichos-Medda H, Hirschfeld-Warnecken V et al. Selective binding and lateral clustering of α5β1 and αvβ3 integrins: Unraveling the spatial requirements for cell spreading and focal adhesion assembly. J Cell adhesion & migration. 2016; 10 (5): 505–515. doi: 10.1080/19336918.2016.1163453.

63. Isenberg BC, Williams C, Tranquillo RT. Endothelialization and flow conditioning of fibrin-based media-equivalents. Ann Biomed Eng. 2006b; 34: 971–985.

64. Al-Maawi S, Herrera-Vizcaino C, Dohle E et al. Homogeneous pressure influences the growth factor release profiles in solid platelet-rich fibrin matrices and enhances vascular endothelial growth factor release in the solid platelet-rich fibrin plugs. Int. J. Growth Factors and Stem Cells in Dentistry. 2018; 1 (1): 8–16.

65. Moreira R, Neusser C, Kruse M et al. Tissue-Engineered Fibrin-Based Heart Valve with Bio-Inspired Textile Reinforcement. Advanced Healthcare Materials. 2016; 5 (16): 2113–2121.

66. Munster S, Jawerth LM, Fabry B, Weitz DA. Structure and mechanics of fibrin clots formed under mechanical perturbation. J Thromb Haemost. 2013; 11: 557–560.

67. Syedain ZH, Meier LA, Bjork JW et al. Implantable arterial grafts from human fibroblasts and fibrin using a multi-graft pulsed flowstretch bioreactor with noninvasive strength monitoring. Biomaterials. 2011; 32: 714–722.

68. Flanagan TC, Cornelissen C, Koch S et al. The in vitro development of autologous fibrin-based tissue-engineered heart valves through optimised dynamic conditioning. Biomaterials. 2007; 28 (23): 3388–3397.

69. Stekelenburg M, Rutten M, Snoeckx CM et al. Dynamic Straining Combined with Fibrin Gel Cell Seeding Improves Strength of Tissue-Engineered Small-Diameter Vascular Grafts. Tissue Engineering. Part A. 2009; 15 (5): 1081–1089.

70. Tschoeke B, Flanagan TC, Cornelissen A et al. Development of a composite degradable/nondegradable tissueengineered vascular graft. Artif Organs. 2008; 32: 800–809.

71. Koch S, Flanagan TC, Sachweh JS et al. Fibrin-polylactide-based tissue-engineered vascular graft in the arterial circulation. Biomaterials. 2010; 31 (17): 4731–4739.

72. Morgan BE, Ginn B, Fukunishi T et al. Regenerative and durable small-diameter graft as an arterial conduit. Proceedings of the National Academy of Sciences. 2019; 116 (26): 12710–12719.

73. Zhijuan He, Xu Ma, Yan Wang et al. Decellularized Fibrin Gel-Covered Canine Carotid Artery: A Completely Biological Composite Scaffold for Tissue-Engineered Small-Caliber Vascular Graft. J Biomaterials and Tissue Engineering. 2018; 8 (3): 336–346. doi: 10.1166/jbt.2018.1745.

74. Pankajakshan D, Krishnan VK, Krishnan LK. Functional stability of endothelial cells on a novel hybrid scaffold for vascular tissue engineering. Biofabrication. 2010; 2 (4): 041001. doi: 10.1088/1758-5082/2/4/041001.

75. Sreerekha PR, Krishnan LK. Cultivation of endothelial progenitor cells on fibrin matrix and layering on dacron/polytetrafluoroethylene vascular grafts. Artif Organs. 2006; 30 (4): 242–249.

76. Matveeva V, Khanova M, Sardin E et al. Endovascular Interventions Permit Isolation of Endothelial Colony-Forming Cells from Peripheral Blood. Int J Mol Sci. 2018; 2; 19 (11). pii: E3453. doi: 10.3390/ijms19113453.

77. Paschalaki KE, Randi AM. Recent Advances in Endothelial Colony Forming Cells Toward Their Use in Clinical Translation. Front Med (Lausanne). 2018; 5: 295. doi: 10.3389/fmed.2018.00295.

78. Simper D, Stalboerger PG, Panetta CJ et al. Smooth muscle progenitor cells in human blood. Circulation. 2002; 106 (10): 1199–1204. doi: 10.1161/01.cir.0000031525.61826.a8.

79. Kolster M, Wilhelmi M, Schrimpf C, Hilfiker A, Haverich A, Aper T. Outgrowing endothelial and smooth muscle cells for tissue engineering approaches. J Tissue Eng. 2017; 8: 2041731417698852. doi: 10.1177/2041731417698852.


Рецензия

Для цитирования:


Матвеева В.Г., Ханова М.Ю., Антонова Л.В., Барбараш Л.С. Фибрин – перспективный материал для тканевой сосудистой инженерии. Вестник трансплантологии и искусственных органов. 2020;22(1):196-208. https://doi.org/10.15825/1995-1191-2020-1-196-208

For citation:


Matveeva V.G., Khanova M.U., Antonova L.V., Barbarash L.S. Fibrin – a promising material for vascular tissue engineering. Russian Journal of Transplantology and Artificial Organs. 2020;22(1):196-208. https://doi.org/10.15825/1995-1191-2020-1-196-208

Просмотров: 2604


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1995-1191 (Print)