Preview

Вестник трансплантологии и искусственных органов

Расширенный поиск

Биодеградируемый сосудистый протез малого диаметра: виды модифицирования биологически активными молекулами и RGD-пептидами

https://doi.org/10.15825/1995-1191-2020-1-86-96

Полный текст:

Аннотация

На сегодняшний день остается высокой потребность в протезах малого диаметра для замещения поврежденного участка кровеносного бассейна, в частности, таковые активно применяются при аортокоронарном шунтировании. В качестве альтернативы аутотрансплантатам выступают синтетические графты на основе полимеров. Перспективным направлением тканевой инженерии является создание биоразлагаемого графта, который может послужить основой для формирования сосудистых тканей de novo непосредственно в организме пациента. Оптимизация полимерного состава изделий уже привела к улучшению как физико-механических, так и биосовместимых свойств изделий, но все же они далеки от требуемых. Одним из решающих факторов надежности сосудистого трансплантата малого диаметра является скорейшее образование эндотелиальной выстилки на его внутренней поверхности, что может обеспечить атромбогенный эффект и полноценный просвет будущего новообразованного сосуда. Для достижения данной цели проводят модифицирование графтов посредством включения в полимерный состав или иммобилизацию на его внутреннюю поверхность биоактивных молекул либо функционально активных пептидных последовательностей. К последним относится сайт клеточной адгезии – аргинин – глицин – аспарагиновая кислота (или RGD-пептид), которая присутствует в большинстве белков экстрацеллюлярного матрикса и имеет тропность к интегриновым рецепторам эндотелиальных клеток. Имитация функциональной активности естественного экстрацеллюлярного матрикса может способствовать спонтанной эндотелизации внутренней поверхности сосудистого протеза, что демонстрируют результаты многих исследований. При этом конфигурация RGD-пептида определяет выживаемость и дифференцировку эндотелиальных клеток, а линкер, через который пептид сшит с полимерной поверхностью, определяет биодоступность RGD-пептида для эндотелиальных клеток.

Об авторах

Е. А. Сенокосова
НИИ комплексных проблем сердечно-сосудистых заболеваний
Россия

Сенокосова Евгения Андреевна.

650002, Кемерово, Сосновый бульвар, 6.



Е. О. Кривкина
НИИ комплексных проблем сердечно-сосудистых заболеваний
Россия
Кемерово


Л. В. Антонова
НИИ комплексных проблем сердечно-сосудистых заболеваний
Россия
Кемерово


Л. С. Барбараш
НИИ комплексных проблем сердечно-сосудистых заболеваний
Россия
Кемерово


Список литературы

1. World health statistics 2016. Monitoring health for the SDGs, sustainable development goals. World Heals Organization. WHO Press. 2016; 64.

2. Мировая статистика здравоохранения, 2017 г.: мониторинг показателей здоровья в отношении целей устойчивого развития. Женева: Всемирная организация здравоохранения; 2018.

3. Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 2006; 3 (11): 2011–2030.

4. Cahill PA, Redmond EM. Vascular endothelium – Gatekeeper of vessel health. Atherosclerosis. 2016; 248: 97–109.

5. Gimbrone MA, Garcia-Cardena G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ Res. 2016; 118 (4): 620–636.

6. Yurdagul AJr, Finney AC, Woolard MD, Orr AW. The arterial microenvironment: the where and why of atherosclerosis. J Biochem. 2016; 473 (10): 1281–1295.

7. Bentzon JF, Otsuka F, Virmani R, Falk E. Mechanisms of plaque formation and rupture. Circ Res. 2014; 114: 1852–1866.

8. Wilson CJ, Clegg RE, Leavesley DI, Pearcy MJ. Mediation of biomaterial-cell interactions by adsorbed proteins: a review. Tissue Eng. 2005; 11: 1–18.

9. Rocco KA, Maxfield MW, Best CA, Dean EW, Breuer CK. In vivo applications of electrospun tissue-engineered vascular grafts: a review. Tissue Eng. Part B: Reviews. 2014; 20 (6) 628–640.

10. Shah SA, Chark D, Williams J, Hessheimer A, Huh J, Wu YC et al. Retrospective Analysis of Local Sensorimotor Deficits After Radial Artery Harvesting for Coronary Artery Bypass Grating. J Surg Res. 2007; 139 (2): 203–208.

11. Tara S, Rocco KA, Hibino N, Sugiura T, Kurobe H, Breuer CK et al. Vessel bioengineering. CIRC J. 2014; 78 (1): 12–19.

12. Gatto C, Giurgola L, D’Amato Tothova J. A suitable and efficient procedure for the removal of decontaminating antibiotics from tissue allografts. Cell Tissue Bank. 2013; 14 (1): 107–115.

13. Palumbo VD, Bruno A, Tomasello G, Damiano G, Lo Monte AI. Bioengineered vascular scaffolds: the state of the art. Int J Artif Organs. 2014; 37 (7): 503–512.

14. Sankaran KK, Subramanian A, Krishnan UM, Sethuraman S. Nanoarchitecture of scaffolds and endothelial cells in engineering small diameter vascular grafts. Biotechnol J. 2015; 10 (1): 96–108.

15. Wang X, Lin P, Yao Q, Chen C. Development of smalldiameter vasculargrafts. World J Surg. 2007; 31: 682– 689.

16. Jaspan VN, Hines GL. The current status of tissue-engineered vascular grafts. Cardiology in Review. 2015; 23 (5): 236–239.

17. Tresoldi C, Pellegata AF, Mantero S. Cells and stimuli in small-caliber blood vessel tissue engineering. Regen Med. 2015. 10 (4): 505–527.

18. Ravi S, Chaikof EL. Biomaterials for vascular tissue engineering. Regen Med. 2010; 5: 107–120.

19. Doshi J, Reneker DH. Electrospinning process and applications of electrospun fibers. J Electrostat. 1995; 35 (2–3): 151–160.

20. Dhandayuthapani B, Yoshida Y, Maekawa T, Kumar DS. Polymeric scaffolds in tissue engineering application: A review. Int J Polym Sci. 2011; 1–19.

21. Rim NG, Shin CS, Shin H. Current approaches to electrospun nanofibers for tissue engineering. Biomed Mater. 2013; 8: 014102.

22. Greenwald SE, Berry CL. Improving vascular grafts: the importance of mechanical and haemodynamic properties. J Pathol. 2000; 190: 292–299.

23. Бабаян АЛ. Поверхностная энергия полимеров (эластомерных композиций): сравнительный анализ значений поверхностной энергии с параметрами дефектности полимеров. Научный журнал КубГАУ. 2017; 131 (07).

24. Shen H, Hu X, Yang F, Bei J, Wang S. Combining oxygen plasma treatment with anchorage of cationized gelatin for enhancing cell affinity of poly (lactide-coglycolide). Biomaterials. 2007; 28: 4219–4230.

25. Meinhart JG, Schense JC, Schima H, Gorlitzer M, Hubbell JA, Deutsch M et al. Enhanced endothelial cell retention on shear-stressed synthetic vascular grafts precoated with RGD-cross-linked fibrin. Tissue Eng. 2005; 11 (5e6): 887–895.

26. Fernandez P, Bareille R, Conrad V, Midy D, Bordenave L. Evaluation of an in vitro endothelialized vascular graft under pulsatile shear stress with a novel radiolabeling procedure. Biomaterials. 2001; 22 (7): 649–658.

27. Feugier P, Black RA, Hunt JA, How TV. Attachment, morphology and adherence of human endothelial cells to vascular prosthesis materials under the action of shear stress. Biomaterials. 2005; 26 (13): 1457–1466.

28. Антонова ЛВ, Севостьянова ВВ, Сейфалиан АМ, Матвеева ВГ, Великанова ЕА, Сергеева ЕА и др. Сравнительное тестирование in vitro биодеградируемых сосудистых имплантатов для оценки перспективы использования в тканевой инженерии. Комплексные проблемы сердечно-сосудистых заболеваний. 2015; (4): 34–41. doi: 10.17802/2306-1278-2015-4-34-41.

29. Anderson JM. Biological responses to materials. Annu Rev Mater Res. 2001; 31: 81–110.

30. Lee KW, Johnson NR, Gao J, Wang Y. Human progenitor cell recruitment via SDF-1α coacervate-laden PGS vascular grafts. Biomaterials. 2013; 34 (38): 9877–9885.

31. Gong W, Lei D, Li S, Huang P, Qi Q, Sun Y et al. Hybrid small-diameter vascular grafts: anti-expansion effect of electrospun poly ε-caprolactone on heparin-coated decellularized matrices. Biomaterials. 2015; 76: 359–370.

32. Ren X, Feng Y, Guo J, Wang H, Li Q, Yang J et al. Surface modification and endothelialization of biomaterials as potential scaffolds for vascular tissue engineering applications. Chem Soc Rev. 2015; 44 (15): 5680–5742.

33. Wang F, Li Y, Shen Y, Wang A, Wang S, Xie T. The functions and applications of RGD in tumor therapy and tissue engineering. Int J Mol Sci. 2013; 14 (7): 13447– 13462.

34. Harburger DS, Calderwood DA. Integrin signalling at a glance. J Cell Sci. 2009; (122): 159–163.

35. Gomazkov OA. Endothelium – «Endocrine Tree». Nature. 2000; 5: 38–46.

36. Kotsovolis G, Kallaras K. The role of endothelium and endogenous vasoactive substances in sepsis. Hippokratia. 2010; 14 (2): 88–93.

37. Бабичев АВ. Роль эндотелия в механизмах гемостаза. Педиатр. 2013; 4 (1): 122–127.

38. Петрищев НН. Дисфункция эндотелия. Патогенетическое значение и методы коррекции. СПб.: ИИЦ ВМА, 2007: 296.

39. Li H, Wallerath T, Forstermann U. Physiological mechanisms regulating the expression of endothelial-type NO synthase. Nitric Oxide. 2002; 7: 132–147.

40. Bae CR, Hino J, Hosoda H, Arai Y, Son C, Makino H et al. Overexpression of C-type Natriuretic Peptide in Endothelial Cells Protects against Insulin Resistance and Inflammation during Diet-induced Obesity. Sci Rep. 2017; 7 (1): 9807.

41. Hagensen MK, Vanhoutte PM, Bentzon JF. Arterial endothelial cells: still the craftsmen of regenerated endothelium. Cardiovascular Res. 2012; 95 (3): 281–289.

42. Pi X, Xie L, Patterson C. Emerging Roles of Vascular Endothelium in Metabolic Homeostasis. Circ Res. 2018; 123 (4): 477–494.

43. Mas M. A Close Look at the Endothelium: Its Role in the Regulation of Vasomotor Tone. Eur Urol Suppl. 2009; 8: 48–57.

44. Gimbrone MA, Garcia-Cardena G. Endothelial Cell Dysfunction and the Pathobiology of Atherosclerosis. Circ Res. 2016; 118 (4): 620–636.

45. Franses JW, Drosu NC, Gibson WJ, Chitalia VC, Edelman ER. Dysfunctional endothelial cells directly stimulate cancer inflammation and metastasis. Int J Cancer. 2013; 133 (6): 1334–144.

46. Kotsovolis G, Kallaras K. The role of endothelium and endogenous vasoactive substances in sepsis. Hippokratia. 2010; 14 (2): 88–93.

47. Briggs T, Arinzeh TL. Growth factor delivery from electrospun materials. J Biomater Tissue Eng. 2011; 1 (2): 129–138.

48. Sevostyanova VV, Golovkin AS, Antonova LV, Glushkova TV, Barbarash OL, Barbarash LS. Modification of polycaprolactone scaffolds with vascular endothelial growth factors for potential application in development of tissue engineered vascular grafts. Genes & Cells. 2015; 10 (1): 84–90.

49. Spano F, Quarta A, Martelli C, Ottobrini L, Rossi RM, Gigli G et al. Fibrous scaffolds fabricated by emulsion electrospinning: from hosting capacity to in vivo biocompatibility. Nanoscale. 2016; 8 (17): 9293–9303.

50. Антонова ЛВ, Матвеева ВГ, Великанова ЕА, Ханова МЮ, Севостьянова ВВ, Цепокина АВ и др. Оценка in vitro активности ростовых факторов и хемоаттрактантных молекул, инкорпорированных в полимерные матриксы на основе полигидроксибутирата/валерата и поликапролактона. Комплексные проблемы сердечно-сосудистых заболеваний. 2018; 7 (2): 89–101. doi: 10.17802/2306-1278-2018-7-2-89-101.

51. Novosel EC, Kleinhans C, Kluger PJ. Vascularization is the key challenge in tissue engineering. Adv Drug Deliv Rev. 2011; 63 (4–5): 300–311.

52. Chen X, Wang J, An Q, Li D, Liu P, Zhu W et al. Electrospun poly(L-lactic acid-co-ε-caprolactone) fibers loaded with heparin and vascular endothelial growth factor to improve blood compatibility and endothelial progenitor cell proliferation. Colloids Surf. B: Biointerfaces. 2015; 128: 106–114.

53. Maes C. Impaired angiogenesis and endochondral bone formation in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188. Mechanisms of Development. 2002; 111 (1–2): 61–73.

54. Potente M, Gerhardt H, Carmeliet P. Basic and therapeutic aspects of angiogenesis. Cell. 2011; 146: 873– 887.

55. Miettinen M, Rikala MS, Rysz J, Lasota J, Wang ZF. Vascular endothelial growth factor receptor 2 (VEGFR2) as a marker for malignant vascular tumors and mesothelioma – immunohistochemical study of 262 vascular endothelial and 1640 nonvascular tumors. Am J Surg Pathol. 2012; 36 (4): 629–639.

56. Sevostyanova VV, Antonova LV, Velikanova EA, Krivkina EO, Glushkova TV et al. Endothelialization of Polycaprolactone Vascular Graft under the Action of Locally Applied Vascular Endothelial Growth Factor. Bull Exp Biol Med. 2018; 165 (2): 264–268.

57. Antonova LV, Sevostyanova VV, Kutikhin AG, Mironov AV, Krivkina EO, Shabaev AR et al. Vascular Endothelial Growth Factor Improves Physico-Mechanical Properties and Enhances Endothelialization of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/Poly(ε-caprolactone) Small-Diameter Vascular Grafts In vivo. Front Pharmacol. 2016; 7: 230.

58. Henry JJD, Yu J, Wang A, Lee R, Fang J, Li S. Engineering the mechanical and biological properties of nanofibrous vascular grafts for in situ vascular tissue engineering. Biofabrication. 2017; 9 (3): 035007.

59. Compagni A, Wilgenbus P, Impagnatiello MA, Cotten M, Christofori G. Fibroblast growth factors are required for efficient tumor angiogenesis. Cancer Res. 2000; 60: 7163–7169.

60. Itoh N, Ornitz DM. Evolution of the FGF and FGFR gene families. Trends Genet. 2004; 20: 563–569.

61. Yun YR, Won JE, Jeon E, Lee S, Kang W, Jo H et al. Fibroblast growth factors: biology, function, and application for tissue regeneration. J. Tissue Eng. 2010; 1 (1): 218142.

62. Liu F, Li G, Deng L, Kuang B, Li X. The roles of FGF 10 in vasculogenesis and angiogenesis. Biom Res. 2017; 3: 1329–1332.

63. Conklin BS, Wu H, Lin PH, Lumsden AB, Chen C. Basic Fibroblast Growth Factor Coating and Endothelial Cell Seeding of a Decellularized Heparin-coated Vascular Graft. Artificial Organs. 2004; 28 (7): 668–675.

64. Haraguchi T, Okada K, Tabata Y, Maniwa Y, Hayashi Y, Okita Y. Controlled Release of Basic Fibroblast Growth Factor From Gelatin Hydrogel Sheet Improves Structural and Physiological Properties of Vein Graft in Rat. Arterioscler Thromb Vasc Biol. 2007; 27: 548–555.

65. Ghil JS, Chung HM. Evidence that platelet derived growth factor (PDGF) action is required for mesoderm patterning in early amphibian (Xenopus laevis) embryogenesis. Int J Dev Biol. 1999; 43 (4): 329–334.

66. Caplan AI, Correa DJ. PDGF in bone formation and regeneration: new insights into a novel mechanism involving MSCs. J Orthop Res. 2011; 29 (12): 1795–1803.

67. Delgado JJ, Sanchez E, Baro M, Reyes R, Evora C, Delgado A. A platelet derived growth factor delivery system for bone regeneration. J Mater Sci Mater Med. 2012; 29 (8): 1903–1912.

68. Yuan SM, Wang YQ, Shen Y, Jing H. Transforming growth factor-β in graft vessels: histology and immunohistochemistry. Clinics. 2011; 66 (5): 895–901.

69. Севастьянов ВИ, Кирпичников МП. Биосовместимые материалы. М.: МИА, 2011: 544 с.

70. Lewellis SW, Knaut H. Attractive guidance: how the chemokine SDF1/CXCL12 guides different cells to different locations. Semin Cell Dev Biol. 2012; 23 (3): 333–340.

71. De Visscher G. Improved endothelialization and reduced thrombosis by coating a synthetic vascular graft with fibronectin and stem cell homing factor SDF-1α. Acta Biomaterialia. 2012; 8 (3): 1330–1338.

72. Антонова ЛВ, Севостьянова ВВ, Кутихин АГ, Великанова ЕА, Матвеева ВГ, Глушкова ТВ и др. Влияние способа модифицирования трубчатого полимерного матрикса биомолекулами BFGF, SDF-1α и VEGF на процессы формирования in vivo тканеинженерного кровеносного сосуда малого диаметра. Вестник трансплантологии и искусственных органов. 2018; 20 (1): 96–109.

73. Antonova LV, Sevostyanova VV, Mironov AV, Krivkina EO, Velikanova EA, Matveeva VG et al. In situ vascular tissue remodeling using biodegradable tubular scaffolds with incorporated growth factors and chemoattractant molecules. Complex Issues of Cardiovascular Diseases. 2018; 7 (2): 25–36.

74. McAllister TN, Maruszewski M, Garrido SA, Wystrychowski W, Dusserre N, Marini A et al. Effectiveness of haemodialysis access with an autologous tissueengineered vascular graft: a multicentre cohort study. The Lancet. 2009; 373 (9673): 1440–1446.

75. Kleinman HK, Philp D, Hoffman MP. Role of the extracellular matrix in morphogenesis. Curr Opin Biotechnol. 2003; 14 (5): 526–532.

76. Watt FM, Hogan BL. Out of Eden: stem cells and their niches. Science. 2000; 287: 1427–1430.

77. Shimaoka M, Springer TA. Therapeutic antagonists and conformational regulation of integrin function. Nat Rev Drug Discov. 2003; 2: 703–716.

78. Rosso F, Giordano A, Barbarisi M, Barbarisi A. From cell-ECM interactions to tissue engineering. J Cell Physiol. 2004; 199: 174–180.

79. Hynes RO. Integrins: versatility, modulation, and signaling in cell adhesion. Cell. 1992; 69: 11–25.

80. Xiao Y, Truskey GA. Effect of receptor-ligand affinity on the strength of endothelial cell adhesion. Biophys J. 1996; 71: 2869–2884.

81. Talacua H, Smits AI, Muylaert DE, van Rijswijk JW, Vink A, Verhaar MC et al. In situ Tissue Engineering of Functional Small-Diameter Blood Vessels by Host Circulating Cells Only. Tissue Eng. Part. A. 2015; 21 (19–20): 2583–2594.

82. Melero-Martin JM, Khan ZA, Picard A, Wu X, Paruchuri S, Bischoff J. In vivo vasculogenic potential of human blood-derived endothelial progenitor cells. Blood. 2007; 109 (11): 4761–4768.

83. Hsia K, Yao CL, Chen WM, Chen JH, Lee H, Lu JH. Scaffolds and cell-based tissue engineering for blood vessel therapy. Cells Tissues Organs. 2016; 202 (5/6): 281–295.

84. Ruegg C, Dormond O, Mariotti A. Endothelial cell integrins and COX-2: mediators and therapeutic targets of tumor angiogenesis. Biochim Biophys Acta. 2004; 1654: 51–67.

85. Берман АЕ, Козлова НИ, Морозевич ГЕ. Интегрины как потенциальная мишень для целевой терапии рака. Биомедицинская химия. 2013; 59 (3): 239–248.

86. Weber LM, Hayda KN, Haskins K, Anseth KS. The effects of cell-matrix interactions on encapsulated betacell function within hydrogels functionalized with matrix-derived adhesive peptides. Biomaterials. 2007; 28 (19): 3004–3011.

87. Tashiro K, Sephel GC, Weeks B, Sasaki M, Martin GR, Kleinman HK et al. A synthetic peptide containing the IKVAV sequence from the chain of laminin mediates cell attachment, migration, and neurite outgrowth. J Biol Chem. 1989; 264 (27): 16174–16182.

88. Hsu SH, Chu WP, Lin YS, Chiang YL, Chen DC, Tsai CL. The effect of an RGD-containing fusion protein CBDRGD in promoting cellular adhesion. J Biotechnol. 2004; 111 (2): 143–154.

89. Liu J, Cheng X, Tian X, Guan D, Ao J, Wu Z et al. Design and synthesis of novel dual-cyclic RGD peptides for αvβ3 integrin targeting. Bioorg Med Chem Lett. 2019; 29 (7): 896–900.

90. Discher DE, Mooney DJ, Zandstra PW. Growth factors, matrices and forces combine and control stem cells. Science. 2009; 324 (5935): 1673–1677.

91. Wu S, Du W, Duan Y, Zhang D, Liu Y, Wu B et al. Regulating the migration of smooth muscle cells by a vertically distributed poly (2-hydroxyethyl methacrylate) gradient on polymer brushes covalently immobilized with RGD peptides. Acta Biomater. 2018; 75: 75–92.

92. Kang TY, Lee JH, Kim BJ, Kang JA, Hong JM, Kim BS. In vivo endothelization of tubular vascular grafts through in situ recruitment of endothelial and endothelial progenitor cells by RGD-fused mussel adhesive proteins. Biofabrication, 2015; 7 (1): 015007.

93. Hwang DS, Gim Y, Yoo HJ, Cha HJ. Practical ecombinant hybrid mussel bloadhesive fp-151. Biomaterials. 2007; 28 (24): 3560–3568.

94. Cutiongco MF, Choo RK, Shen NJ, Chua BM, Sju E, Choo AW et al. Composite Scaffold of Poly (Vinyl Alcohol) and Interfacial Polyelectrolyte Complexation Fibers for Controlled Biomolecule Delivery. Front Bioeng Biotechnol. 2015; 3: 3.

95. Cutiongco MF, Anderson DE, Hinds MT, Yim EK. In vitro and ex vivo hemocompatibility of off-the-shelf modified poly (vinyl alcohol) vascular grafts. Acta Biomater. 2015; 25: 97–108.

96. Noel S, Hachem A, Merhi Y, De Crescenzo G. Development of a Polyester Coating Combining Antithrombogenic and Cell Adhesive Properties: Influence of Sequence and Surface Density of Adhesion Peptides. Biomacromolecules. 2015; 16 (6): 1682–1694.

97. Choi WS, Joung YK, Lee Y, Bae JW, Park HK, Park YH et al. Enhanced Patency and Endothelialization of Small-Caliber Vascular Grafts Fabricated by Coimmobilization of Heparin and Cell-Adhesive Peptides. ACS Appl Mater Interfaces. 2016; 8 (7): 4336–4346.

98. Sedaghati T, Jell G, Seifalian A. Investigation of Schwann cell behaviour on RGD-functionalised bioabsorbable nanocomposite for peripheral nerve regeneration. New Biotechnol. 2014; 31: 203–213.

99. Antonova LV, Seifalian AM, Kutikhin AG, Sevostyanova VV, Matveeva VG, Velikanova EA et al. Conjugation with RGD Peptides and Incorporation of Vascular Endothelial Growth Factor Are Equally Efficient for Biofunctionalization of Tissue-Engineered Vascular Grafts Int J Mol Sci. 2016; 17 (11): 1920.

100. Antonova L, Silnikov V, Sevostyanova V, Yuzhalin A, Koroleva L, Velikanova E et al. Biocompatibility of Small-Diameter Vascular Grafts in Different Modes of RGD Modification. Polymers. 2019; 11 (1): 174.


Для цитирования:


Сенокосова Е.А., Кривкина Е.О., Антонова Л.В., Барбараш Л.С. Биодеградируемый сосудистый протез малого диаметра: виды модифицирования биологически активными молекулами и RGD-пептидами. Вестник трансплантологии и искусственных органов. 2020;22(1):86-96. https://doi.org/10.15825/1995-1191-2020-1-86-96

For citation:


Senokosova E.A., Krivkina E.O., Antonova L.V., Barbarash L.S. Biodegradable small-diameter vascular graft: types of modification with bioactive molecules and RGD peptides. Russian Journal of Transplantology and Artificial Organs. 2020;22(1):86-96. (In Russ.) https://doi.org/10.15825/1995-1191-2020-1-86-96

Просмотров: 96


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1995-1191 (Print)
ISSN 2412-6160 (Online)