Preview

Russian Journal of Transplantology and Artificial Organs

Advanced search

Results of correction of aortic valve defects using small‑diameter «BioLAB» xenopericardial prosthesis in old patients

https://doi.org/10.15825/1995-1191-2020-1-79-85

Abstract

A prosthesis-patient mismatch (PPM) describes a state in which the valve prosthesis implanted during surgery is too small in relation to the patient’s body size. This leads to high transvalvular pressure gradients. We investigate direct results and dependence of transvalvular pressure gradients on body mass index and surface area in patients after correction of aortic valve defects using small-diameter BioLAB prosthesis. Material and methods. From January 2011 to August 2018, 65 small-diameter (18, 20) BioLAB scaffold xenopericardial prostheses were implanted in aortic position at the Department of Emergency Surgery for Acquired Heart Defects, Bakulev National Medical Research Center of Cardiovascular Surgery. The average age of the patients was 75.4 ± 4.1 (65–86 years). The average patient body mass index was 25.74 ± 5.11 kg/m2 (19.57–39.54). The average body surface area was 1.79 ± 0.15 (1.54–2.18). Results. Isolated aortic valve replacement was performed in 38 (58%) patients, the rest of the surgeries were combined with other techniques. There were no reoperations due to early prosthetic endocarditis or prosthetic dysfunction in hospital. Hospital mortality was 6% (4 patients). Correlation dependence of peak pressure prosthesis gradient on body surface area and body mass index was 10% and 8%, respectively. Conclusions. This study confirmed the safety and effectiveness of using small-diameter BioLAB scaffold xenopericardial prostheses in aortic valve position.

About the Authors

S. I. Babenko
A.N. Bakulev National Medical Research Center of Cardiovascular Surgery
Russian Federation
Moscow


R. M. Muratov
A.N. Bakulev National Medical Research Center of Cardiovascular Surgery
Russian Federation
Moscow


T. A. Chabaidze
A.N. Bakulev National Medical Research Center of Cardiovascular Surgery
Russian Federation
Moscow


N. N. Soboleva
A.N. Bakulev National Medical Research Center of Cardiovascular Surgery
Russian Federation
Moscow


M. N. Sorkomov
A.N. Bakulev National Medical Research Center of Cardiovascular Surgery
Russian Federation

Sorkomov Maxim Nurgustanovich.

135, Rublevskoe sh., Moscow, 121552



References

1. Muratov RM, Babenko SI, Komolov SR, Sobolev NN. The first experience of using frame xenopericardial low-profile prostheses of the «BioLAB» series in the aortic position. Thoracic and cardiovascular surgery. 2010; 4: 19–21.

2. Babenko SI, Muratov RM, Sobolev NN, Lazarev RA, Orlinskaya VA, Matsonoshvili TR, Bokeria LA. Hemodynamic parameters and left ventricular remodeling using different types of biological prostheses in the aortic position. Thoracic and cardiovascular surgery. 2009; 5: 17–21.

3. Babenko SI, Muratov RM, Soboleva NN, Titov DA, Bockeria LA. Long-term results of implantation of xenopericardial prosthesis frame «BioLAB» in the aortic position. Thoracic and cardiovascular surgery. 2013; 6: 41–46.

4. Zheleznev SI, Isayan MV, Astapov DA, Tuleutaev RM, Semenova EI. Aortic valve replacement with stented bioprosthesis «BIOLAB KA/PT» in elderly and old patients. Siberian medical journal (Tomsk). 2012; 27 (3): 72–76.

5. Piccardo A, Blossier D, LeGuyader A, Orsel I, Sekkal S, Cornu E, Laskar M. Fate of aortic bioprostheses: An 18- year experience. The Journal of Thoracic and Cardiovascular Surgery. March 2016; 151 (3): 754–761. doi.org/10.1016/j.jtcvs.2015.10.020.

6. Rajappan K, Rimoldi O, Camici PG, Pennell DJ, Sheridan DJ. Mechanisms of coronary microcirculatory dysfunction in patients with aortic stenosis and angiographically normal coronary arteries. Circulation. 2002; 105: 470–476. doi.org/10.1161/hc0402.102931.

7. Rajappan K, Rimoldi OE, Camici PG, Bellenger NG, Pennell DJ, Sheridan DJ. Functional changes in coronary microcirculation after valve replacement in patients with aortic stenosis. Circulation. 2003; 107: 3170–3175. doi.org/10.1161/01.cir.0000074211.28917.31.

8. Garcia D, Camici PG, Durand LG, Rajappan K, Gaillard E, Rimoldi OE et al. Impairment of coronary flow reserve in aortic stenosis. J Appl Physiol. 2009; 106: 113–121. doi.org/10.1152/japplphysiol.00049.2008.

9. Rahimtoola SH. The problem of valve prosthesis-patient mismatch. Circulation. 1978; 58 (1): 20–24. doi.org/10.1161/01.cir.58.1.20.

10. Foroutan F, Guyatt GH, O’Brien K, Bain E, Stein M, Bhagra S et al. Prognosis after surgical replacement with a bioprosthetic aortic valve in patients with severe symptomatic aortic stenosis: systematic review of observational studies. BMJ. 2016; 354: i5065. doi.org/10.1136/bmj.i5065.

11. Baumgartner H, Falk V, Bax JJ, de Bonis M, Hamm C, Holm PJ. Valvular heart disease Supplement to 2017 ESC/EACTS Guidelines for the management of valvular heart disease. Eur Heart J. 2017; 38 (36): 2739–2791. doi.org/10.1093/eurheartj/ehx636.

12. Lindman BR, Clavel M-A, Mathieu P, Iung B, Lancellotti P, Otto CM et al. Calcific aortic stenosis. Nat Rev Dis Primers. 2016; 124 (2): 16006 10.1038/nrdp.2016.6 doi.org/10.1038/nrdp.2016.7.

13. Goldbarg SH, Elmariah S, Miller MA, Fuster V. Insights into degenerative aortic valve disease. J Am Coll Cardiol. 2007; 50 (13): 1205–1213. https://doi.org/10.1016/j.jacc.2007.06.024.

14. Rodriguez-Gabella T, Voisine P, Puri R, Pibarot P, Rodés-Cabau J. Aortic bioprosthetic valve durability: incidence, mechanisms, predictors, and management of surgical and transcatheter valve degeneration. J Am Coll Cardiol. 2017; 70 (8): 1013–1028. https://doi.org/10.1016/j.jacc.2017.07.715.

15. Johnston DR, Soltesz EG, Vakil N, Rajeswaran J, Roselli EE, Sabik JF III et al. Long-Term Durability of Bioprosthetic Aortic Valves: Implications From 12,569 Implants. Ann Thorac Surg. 2015; 99 (4): 1239–1247. https://doi.org/10.1016/j.resinv.2017.04.002.

16. Rossignol P et al. Loss in body weight is an independent prognostic factor for mortality in chronic heart failure: insights from the GISSI-HF and Val-HeFT trials. Eur J Heart Fail. 2015; 17 (4): 424–433. https://doi.org/10.1002/ejhf.240.

17. Mancio J, Fonseca P, Figueiredo B, Ferreira W, Carvalho M, Ferreira N et al. Association of body mass index and visceral fat with aortic valve calcification and mortality after transcatheter aortic valve replacement: the obesity paradox in severe aortic stenosis. Diabetol Metab Syndr. 2017; 9: 86. https://doi.org/10.1186/s13098-017-0285-2.

18. Filip G, Bryndza MA, Konstanty-Kalandyk J, Piatek J, Wegrzyn P, Ceranowicz P et al. Ministernotomy or sternotomy in isolated aortic valve replacement? Early results. Kardiochir Torakochirurgia Pol. 2018; 15 (4): 213–218. https://doi.org/10.5114/kitp.2018.80916.

19. Santana O, Reyna J, Grana R, Buendia M, Lamas GA, Lamelas J. Outcomes of minimally invasive valve surgery versus standard sternotomy in obese patients undergoing isolated valve surgery. Ann Thorac Surg. 2011, 91: 406–410. https://doi.org/10.1016/j.athoracsur.2010.09.039.

20. Furukawa N, Kuss O, Aboud A, Schönbrodt M, Renner A, Meibodi KH et al. Ministernotomy versus conventional sternotomy for aortic valve replacement: matched propensity score analysis of 808 patients. European Journal of Cardio-Thoracic Surgery. 2014; 46, (2): 221–227. https://doi.org/10.1093/ejcts/ezt616.


Review

For citations:


Babenko S.I., Muratov R.M., Chabaidze T.A., Soboleva N.N., Sorkomov M.N. Results of correction of aortic valve defects using small‑diameter «BioLAB» xenopericardial prosthesis in old patients. Russian Journal of Transplantology and Artificial Organs. 2020;22(1):79-85. https://doi.org/10.15825/1995-1191-2020-1-79-85

Views: 918


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1995-1191 (Print)