Preview

Вестник трансплантологии и искусственных органов

Расширенный поиск

Возрастные особенности субпопуляционного состава лимфоцитов и функциональной активности мононуклеаров периферической крови у больных хронической болезнью почек до и после трансплантации

https://doi.org/10.15825/1995-1191-2020-1-40-49

Полный текст:

Аннотация

Цель: проанализировать особенности субпопуляционного состава лимфоцитов и функциональной активности мононуклеаров периферической крови у больных хронической болезнью почек старшей возрастной группы. Материалы и методы. В исследование включены пациенты (n = 21) с хронической болезнью почек (ХБП) старше 55 лет, которым была выполнена аллотрансплантация почки (АТП) от субоптимальных доноров. Средний возраст составил 61,4 ± 4,5 года (от 55 до 69). Коморбидный фон оценивали по шкале CIRS-G, среднее количество баллов – 13,6 ± 5,09. Группу сравнения сформировали из 21 добровольца 55–70 лет без острых воспалительных заболеваний и признаков ХБП. Средний возраст составил 61,1 ± 4,4 года, среднее количество баллов по шкале CIRS-G – 12,11 ± 6,04. У всех участников исследования определяли субпопуляционный состав лимфоцитов периферической крови методом проточной цитометрии. Для оценки функционального состояния мононуклеаров периферической крови использовали метод витальной компьютерной лазерной цитоморфометрии. Оценивали показатель функциональной активности (ПФА) ядра клеток, который позволяет косвенно судить о степени функциональной активности клетки. Результаты. У больных ХБП до АТП отмечено уменьшение доли CD4-клеток (p = 0,009), увеличение доли CD8-клеток (р = 0,02), уменьшение отношения CD4/CD8 (р = 0,017), увеличение доли естественных киллеров (р = 0,025) по сравнению со здоровыми добровольцами. При этом снижение общей доли CD3- клеток, увеличение экспрессии HLA-DR CD3-клетками и увеличение доли В-клеток было статистически незначимо: р = 0,137, р = 0,072 и р = 0,135 соответственно. На пятые сутки после АТП доля CD3-клеток увеличивалась (р = 0,017) главным образом за счет роста доли CD4-клеток (р = 0,002) по сравнению с показателем до АТП. Также увеличилось содержание естественных киллеров (р = 0,002) и экспрессия HLA-DR на CD3-клетках (р < 0,0001). Увеличение доли CD8-клеток, отношения CD4/CD8 и снижения доли В-клеток было статистически незначимо: р = 0,439, р = 0,277 и р = 0,236 соответственно. У больных ХБП до АТП отмечено снижение ПФА по сравнению со здоровыми добровольцами (р = 0,0138). После АТП этот показатель значительно увеличился по сравнению со значением до АТП (p < 0,0001) и превысил значение ПФА у здоровых добровольцев (p < 0,0001). У здоровых добровольцев не было отмечено значимой связи функциональной активности мононуклеаров периферической крови с возрастом (r = –0,263 [95%ДИ –0,6236; 0,1907], р = 0,264, r2 = 0,069). В то же время у больных ХБП мы отметили значимую отрицательную зависимость ПФА от возраста: r = –0,52 [95%ДИ –0,7771; –0,1135], р = 0,0157, r2 = 0,27 до АТП; r = –0,418 [95%ДИ –0,7559; –0,06256], р = 0,0272, r2 = 0,175 после АТП. Заключение. Больные ХБП старшей возрастной группы до и после АТП подвержены существенному изменению морфофункционального состояния мононуклеарных клеток периферической крови и субпопуляционного состава лимфоцитов. При этом выраженность изменения функционального состояния этих клеток имеет сильную связь с возрастом, чего не наблюдается в группе здоровых добровольцев. Это следует учитывать при выборе иммуносупрессивной терапии у реципиентов почечного трансплантата старшей возрастной группы.

Об авторах

Д. В. Артемов
ГБУЗ МО «Московский областной научно-исследовательский клинический институт имени М.Ф. Владимирского»
Россия

Артемов Дмитрий Владимирович.

129110, Москва, ул. Щепкина, д. 61/2, корпус 6.



А. Б. Зулькарнаев
ГБУЗ МО «Московский областной научно-исследовательский клинический институт имени М.Ф. Владимирского»
Россия
Москва


А. В. Ватазин
ГБУЗ МО «Московский областной научно-исследовательский клинический институт имени М.Ф. Владимирского»
Россия

Москва



Список литературы

1. USRDS.org [Internet]. United States Renal Data System. 2016 USRDS annual data report. Volume 2 – End-stage Renal Disease (ESRD) in the United States: 1 · Incidence, Prevalence, Patient Characteristics, and Treatment Modalities 2016; Available at: https://www. usrds.org/2016/view/Default.aspx.

2. Томилина НА, Андрусев АМ, Перегудова НГ, Шинкарев МБ. Заместительная терапия терминальной хронической почечной недостаточности в Российской Федерации В 2010–2015 гг. Отчет по данным общероссийского регистра заместительной почечной терапии Российского диализного общества, часть первая. Нефрология и диализ. 2017; 19 (4, приложение): 1–95. doi: 10.28996/1680-4422-2017-4suppl-1-95.

3. ERA-EDTA-reg.org [Internet]. European Renal Association – European Dialysis and Transplant Association (ERA-EDTA) Registry Annual Report 2015. 2017; Available at: https://www.era-edta-reg.org/files/annualreports/pdf/AnnRep2015.pdf.

4. Chopra B, Sureshkumar KK. Changing organ allocation policy for kidney transplantation in the United States. World J Transplant. 2015; 5 (2): 38–43. doi: 10.5500/wjt.v5.i2.38.

5. Нестеренко ИВ, Ватазин АВ, Филипцев ПЯ, Янковой АГ. Новый подход в оценке почечных трансплантатов, полученных от возрастных маргинальных доноров. Медицинский альманах. 2008; 5: 23–24.

6. Нестеренко ИВ, Ватазин АВ, Филипцев ПЯ, Янковой АГ. Трансплантация почки от маргинальных доноров, получающих в процессе кондиционирования высокие дозы инотропной поддержки. Медицинский альманах. 2008; 5: 25–27.

7. Нестеренко ИВ, Филипцев ПЯ, Ватазин АВ. Новые аспекты использования маргинальных доноров с сопутствующими заболеваниями. Альманах клинической медицины. 2008; 18: 29–34.

8. Meier-Kriesche HU, Kaplan B. Immunosuppression in elderly renal transplant recipients: are current regimens too aggressive? Drugs Aging. 2001; 18 (10): 751–759. doi: 10.2165/00002512-200118100-00004.

9. Meier-Kriesche HU, Ojo AO, Hanson JA, Kaplan B. Exponentially increased risk of infectious death in older renal transplant recipients. Kidney Int. 2001; 59 (4): 1539– 1543. doi: 10.1046/j.1523-1755.2001.0590041539.x.

10. de Fijter JW. The impact of age on rejection in kidney transplantation. Drugs Aging. 2005; 22 (5): 433–449. doi: 10.2165/00002512-200522050-00007.

11. Danovitch GM., Gill J, Bunnapradist S. Immunosuppression of the elderly kidney transplant recipient. Transplantation. 2007; 84 (3): 285–291. doi: 10.1097/01.tp.0000275423.69689.dc.

12. Miller MD, Paradis CF, Houck PR, Mazumdar S, Stack JA, Rifai AH. Rating chronic medical illness burden in geropsychiatric practice and research: application of the Cumulative Illness Rating Scale. Psychiatry Res. 1992; 41: 237–248.

13. Singh P, Ng YH, Unruh M. Kidney Transplantation Among the Elderly: Challenges and Opportunities to Improve Outcomes. Adv Chronic Kidney Dis. 2016; 23 (1): 44–50. doi: 10.1053/j.ackd.2015.11.002.

14. Nikodimopoulou M, Karakasi K, Daoudaki M, Fouza A, Vagiotas L, Myserlis G et al. Kidney Transplantation in Old Recipients From Old Donors: A Single-Center Experience. Transplant Proc. 2019; 51 (2): 405–407. doi: 10.1016/j.transproceed.2019.01.019.

15. Geraci PM, Sepe V. Non-heart-beating organ donation in Italy. Minerva Anestesiol. 2011; 77 (6): 613–623.

16. Трансплантология. 2-е изд., испр. и доп. Под ред. В.И. Шумакова. М.: МИА, 2006.

17. Трансплантология. Фармакотерапия без ошибок. Под ред. С.В. Готье, Я.Г. Мойсюка. М.: Е-ното, 2014: 122–179.

18. Jagger A, Shimojima Y, Goronzy JJ, Weyand CM. Regulatory T cells and the immune aging process: a mini-review. Gerontology. 2014; 60 (2): 130–137. doi: 10.1159/000355303.

19. Valdiglesias V, Sánchez-Flores M, Maseda A, Marcos-Pérez D, Millán-Calenti JC, Pásaro E et al. Lymphocyte Subsets in a Population of Nonfrail Elderly Individuals. J Toxicol Environ Health A. 2015; 78 (13–14): 790–804. doi: 10.1080/15287394.2015.1051170.

20. Pinti M, Appay V, Campisi J, Frasca D, Fülöp T, Sauce D et al. Aging of the immune system: Focus on inflammation and vaccination. Eur J Immunol. 2016; 46 (10): 2286–2301. doi: 10.1002/eji.201546178.

21. Gill Z, Nieuwoudt M, Ndifon W. The Hayflick Limit and Age-Related Adaptive Immune Deficiency. Gerontology. 2018; 64 (2): 135–139. doi: 10.1159/000478091.

22. Betjes MG. Immune cell dysfunction and inflammation in end-stage renal disease. Nat Rev Nephrol. 2013; 9 (5): 255–265. doi: 10.1038/nrneph.2013.44.

23. Vogelzang JL, van Stralen KJ, Noordzij M, Diez JA, Carrero JJ, Couchoud C et al. Mortality from infections and malignancies in patients treated with renal replacement therapy: data from the ERA-EDTA registry. Nephrol Dial Transplant. 2015; 30 (6): 1028–1037. doi: 10.1093/ndt/gfv007.

24. Navaneethan SD, Schold JD, Arrigain S, Jolly SE, Nally JV Jr. Cause-Specific Deaths in Non-Dialysis-Dependent CKD. J Am Soc Nephrol. 2015; 26 (10): 2512– 2520. doi: 10.1681/ASN.2014101034.

25. Cheung CY, Chan GC, Chan SK, Ng F, Lam MF, Wong SS et al. Cancer Incidence and Mortality in Chronic Dialysis Population: A Multicenter Cohort Study. Am J Nephrol. 2016; 43 (3): 153–159. doi: 10.1159/000445362.

26. Litjens NH, Huisman M, van den Dorpel M, Betjes MG. Impaired immune responses and antigen-specific memory CD4+ T cells in hemodialysis patients. J Am Soc Nephrol. 2008; 19 (8): 1483–1490. doi: 10.1681/ASN.2007090971.

27. Kim JU, Kim M, Kim S, Nguyen TT, Kim E, Lee S, Kim S, Kim H. Dendritic Cell Dysfunction in Patients with Endstage Renal Disease. Immune Netw. 2017; 17 (3): 152– 162. doi: 10.4110/in.2017.17.3.152.

28. Litjens NH, van Druningen CJ, Betjes MG. Progressive loss of renal function is associated with activation and depletion of naive T lymphocytes. Clin Immunol. 2006; 118 (1): 83–91. doi: 10.1016/j.clim.2005.09.007.

29. Yoon JW, Gollapudi S, Pahl MV, Vaziri ND. Naïve and central memory T-cell lymphopenia in end-stage renal disease. Kidney Int. 2006; 70 (2): 371–376. doi: 10.1038/sj.ki.5001550.

30. Betjes MG, Langerak AW, van der Spek A, de Wit EA, Litjens NH. Premature aging of circulating T cells in patients with end-stage renal disease. Kidney Int. 2011; 80 (2): 208–217. doi: 10.1038/ki.2011.110.

31. Lisowska KA, Dębska-Ślizień A, Jasiulewicz A, Heleniak Z, Bryl E, Witkowski JM. Hemodialysis affects phenotype and proliferation of CD4-positive T lymphocytes. J Clin Immunol. 2012; 32 (1): 189–200. doi: 10.1007/s10875-011-9603-x.

32. Meijers RW, Litjens NH, de Wit EA, Langerak AW, Baan CC, Betjes MG. Uremia-associated immunological aging is stably imprinted in the T-cell system and not reversed by kidney transplantation. Transpl Int. 2014; 27 (12): 1272–1284. doi: 10.1111/tri.12416.

33. Meier P, Dayer E, Blanc E, Wauters JP. Early T cell activation correlates with expression of apoptosis markers in patients with end-stage renal disease. J Am Soc Nephrol. 2002; 13 (1): 204–212.

34. Xie DQ, Gan H, Du XG, Li ZR, Wu J. The characterization of Th1/Th2 profile in end-stage renal disease patients and the correlation with the apoptosis of T lymphocyte. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2006; 22 (6): 763–766.

35. Winterberg PD, Ford ML. The effect of chronic kidney disease on T cell alloimmunity. Curr Opin Organ Transplant. 2017; 22 (1): 22–28. doi: 10.1097/MOT.0000000000000375.

36. Lisowska KA, Debska-Slizien A, Radzka M, Witkowski JM, Rutkowski B, Bryl E. Recombinant human erythropoietin treatment of chronic renal failure patients normalizes altered phenotype and proliferation of CD4- positive T lymphocytes. Artif Organs. 2010; 34 (3): E77–84. doi: 10.1111/j.1525-1594.2009.00942.x.

37. Betjes MG, Litjens NH. Chronic kidney disease and premature ageing of the adaptive immune response. Curr Urol Rep. 2015; 16 (1): 471. doi: 10.1007/s11934-014-0471-9.

38. Augustine JJ, Poggio ED, Clemente M, Aeder MI, Bodziak KA, Schulak JA et al. Hemodialysis vintage, black ethnicity, and pretransplantation antidonor cellular immunity in kidney transplant recipients. J Am Soc Nephrol. 2007; 18 (5): 1602–1606. doi: 10.1681/ASN.2006101105.

39. Crespo E, Lucia M, Cruzado JM, Luque S, Melilli E, Manonelles A et al. Pre-transplant donor-specific T-cell alloreactivity is strongly associated with early acute cellular rejection in kidney transplant recipients not receiving Tcell depleting induction therapy. PLoS One. 2015; 10 (2): e0117618. doi: 10.1371/journal.pone.0117618.

40. Hart A, Salkowski N, Snyder JJ, Israni AK, Kasiske BL. Beyond «Median Waiting Time»: Development and Validation of a Competing Risk Model to Predict Outcomes on the Kidney Transplant Waiting List. Transplantation. 2016; 100 (7): 1564–1570. doi: 10.1097/TP.0000000000001185.

41. Gritane K, Jusinskis J, Malcevs A, Suhorukovs V, Amerika D, Puide I et al. Influence of Pretransplant Dialysis Vintage on Repeated Kidney Transplantation Outcomes. Transplant Proc. 2018; 50 (5): 1249–1257. doi: 10.1016/j.transproceed.2018.01.056.

42. Ватазин АВ, Зулькарнаев АБ, Степанов ВА. Анализ выживаемости пациентов в листе ожидания трансплантации почки с позиции конкурирующих рисков. Вестник трансплантологии и искусственных органов. 2019; 21 (1): 35–45. doi: 10.15825/1995-1191-2019-1-35-45.

43. Crepin T, Carron C, Roubiou C, Gaugler B, Gaiffe E, Simula-Faivre D et al. ATG-induced accelerated immune senescence: clinical implications in renal transplant recipients. Am J Transplant. 2015; 15 (4): 1028–1038. doi: 10.1111/ajt.13092.

44. Luque Y, Jamme M, Rabant M, DeWolf S, Noël LH, Thervet E et al. Long-term CD4 lymphopenia is associated with accelerated decline of kidney allograft function. Nephrol Dial Transplant. 2016; 31 (3): 487–495. doi: 10.1093/ndt/gfv362.

45. Björkström NK, Ljunggren HG, Michaëlsson J. Emerging insights into natural killer cells in human peripheral tissues. Nat Rev Immunol. 2016; 16 (5): 310–320. doi: 10.1038/nri.2016.34.

46. Abel AM, Yang C, Thakar MS, Malarkannan S. Natural Killer Cells: Development, Maturation, and Clinical Utilization. Front Immunol. 2018; 9: 1869. doi: 10.3389/fimmu.2018.01869.

47. Xiang FF, Zhu JM, Cao XS, Shen B, Zou JZ, Liu ZH et al. Lymphocyte depletion and subset alteration correlate to renal function in chronic kidney disease patients. Ren Fail. 2016; 38 (1): 7–14. doi: 10.3109/0886022X.2015.1106871.

48. Schmaderer C, Heemann U. Blocking innate immunity to slow the progression of chronic kidney disease. Naunyn Schmiedebergs Arch Pharmacol. 2014; 387 (10): 905–907. doi: 10.1007/s00210-014-1031-z.

49. Spada R, Rojas JM, Pérez-Yagüe S, Mulens V, Cannata- Ortiz P, Bragado R et al. NKG2D ligand overexpression in lupus nephritis correlates with increased NK cell activity and differentiation in kidneys but not in the periphery. J Leukoc Biol. 2015; 97 (3): 583–598. doi: 10.1189/jlb.4A0714-326R.

50. Law BMP, Wilkinson R, Wang X, Kildey K, Lindner M, Rist MJ et al. Interferon-γ production by tubulointerstitial human CD56 bright natural killer cells contributes to renal fibrosis and chronic kidney disease progression. Kidney Int. 2017; 92 (1): 79–88. doi: 10.1016/j.kint.2017.02.006.

51. Turner JE. Natural killers: the bad guys in fibrosis? Kidney Int. 2017; 92 (1): 9–11. doi: 10.1016/j.kint.2017.03.011.

52. Hamze M, Desmetz C, Guglielmi P. B cell-derived cytokines in disease. Eur Cytokine Netw. 2013; 24 (1): 20–26. doi: 10.1684/ecn.2013.0327.

53. Couser WG. Primary Membranous Nephropathy. Clin J Am Soc Nephrol. 2017; 12 (6): 983–997. doi: 10.2215/CJN.11761116.

54. Caravaca-Fontán F, Gutiérrez E, Delgado Lillo R, Praga M. Monoclonal gammopathies of renal significance. Nefrologia. 2017; 37 (5): 465–477. doi: 10.1016/j.nefro.2017.03.012.

55. Kattah AG, Fervenza FC, Roccatello D. Rituximabbased novel strategies for the treatment of immune-mediated glomerular diseases. Autoimmun Rev. 2013; 12 (8): 854–859. doi: 10.1016/j.autrev.2012.09.002.

56. Pahl MV, Gollapudi S, Sepassi L, Gollapudi P, Elahimehr R, Vaziri ND. Effect of end-stage renal disease on B-lymphocyte subpopulations, IL-7, BAFF and BAFF receptor expression. Nephrol Dial Transplant. 2010; 25 (1): 205–212. doi: 10.1093/ndt/gfp397.

57. Kim KW, Chung BH, Jeon EJ, Kim BM, Choi BS, Park CW et al. B cell-associated immune profiles in patients with end-stage renal disease (ESRD). Exp Mol Med. 2012; 44 (8): 465–472. doi: 10.3858/emm.2012.44.8.053.

58. Malinowski K, Tsukuda K, Terashima T, Rapaport FT. Effects of end-stage renal disease on the expression of differentiation and HLA-DR markers on the surface of T and B lymphocytes. Transplant Proc. 1997; 29 (1–2): 1020–1024.

59. Naicker SD, Cormican S, Griffin TP, Maretto S, Martin WP, Ferguson JP et al. Chronic Kidney Disease Severity Is Associated With Selective Expansion of a Distinctive Intermediate Monocyte Subpopulation. Front Immunol. 2018; 9: 2845. doi: 10.3389/fimmu.2018.02845.

60. Shimaoka M, Hosotsubo K, Sugimoto M, Sakaue G, Taenaka N, Yoshiya I et al. The influence of surgical stress on T cells: enhancement of early phase lymphocyte activation. Anesth Analg. 1998; 87 (6): 1431–1435.

61. Buunen M, Gholghesaei M, Veldkamp R, Meijer DW, Bonjer HJ, Bouvy ND. Stress response to laparoscopic surgery: a review. Surg Endosc. 2004; 18 (7): 1022– 1028. doi: 10.1007/s00464-003-9169-7.

62. Bartal I, Melamed R, Greenfeld K, Atzil S, Glasner A, Domankevich V et al. Immune perturbations in patients along the perioperative period: alterations in cell surface markers and leukocyte subtypes before and after surgery. Brain Behav Immun. 2010; 24 (3): 376–386. doi: 10.1016/j.bbi.2009.02.010.

63. Caprara GV, Nisini R, Castellani V, Vittorio P, Alessandri G, Vincenzo Z et al. Lymphocyte subsets are influenced by positivity levels in healthy subjects before and after mild acute stress. Immunol Lett. 2017; 188: 13–20. doi: 10.1016/j.imlet.2017.05.012.

64. Nankivell BJ, Borrows RJ, Fung CL, O’Connell PJ, Allen RD, Chapman JR. The natural history of chronic allograft nephropathy. N Engl J Med. 2003; 349 (24): 2326–2333. doi: 10.1056/NEJMoa020009.

65. Martín-Fontecha A, Thomsen LL, Brett S, Gerard C, Lipp M, Lanzavecchia A et al. Induced recruitment of NK cells to lymph nodes provides IFN-gamma for T(H)1 priming. Nat Immunol. 2004; 5 (12): 1260–1265. doi: 10.1038/ni1138.

66. Zingoni A, Sornasse T, Cocks BG, Tanaka Y, Santoni A, Lanier LL. Cross-talk between activated human NK cells and CD4+ T cells via OX40-OX40 ligand interactions. J Immunol. 2004; 173 (6): 3716–3724. doi: 10.4049/jimmunol. 173.6.3716.

67. Noval Rivas M, Hazzan M, Weatherly K, Gaudray F, Salmon I, Braun MY. NK cell regulation of CD4 T cellmediated graft-versus-host disease. J Immunol. 2010; 184 (12): 6790–6798. doi: 10.4049/jimmunol.0902598.

68. Zecher D, Li Q, Oberbarnscheidt MH, Demetris AJ, Shlomchik WD, Rothstein DM, Lakkis FG. NK cells delay allograft rejection in lymphopenic hosts by downregulating the homeostatic proliferation of CD8+ T cells. J Immunol. 2010; 184 (12): 6649–6657. doi: 10.4049/jimmunol.0903729.

69. Garrod KR, Liu FC, Forrest LE, Parker I, Kang SM, Cahalan MD. NK cell patrolling and elimination of donor- derived dendritic cells favor indirect alloreactivity. J Immunol. 2010; 184 (5): 2329–2336. doi: 10.4049/jimmunol.0902748.

70. Meier-Kriesche H, Ojo AO, Arndorfer JA, Leichtman AB, Lake K, Cibrik DM et al. Need for individualized immunosuppression in elderly renal transplant recipients. Transplant Proc. 2001; 33 (1–2): 1190–1191. Jacobson PA, Schladt D, Oetting WS, Leduc R, Guan W, Matas AJ, Israni A. Lower calcineurin inhibitor doses in older compared to younger kidney transplant recipients yield similar troughs. Am J Transplant. 2012; 12 (12): 3326–3336. doi: 10.1111/j.1600-6143.2012.04232.x.


Для цитирования:


Артемов Д.В., Зулькарнаев А.Б., Ватазин А.В. Возрастные особенности субпопуляционного состава лимфоцитов и функциональной активности мононуклеаров периферической крови у больных хронической болезнью почек до и после трансплантации. Вестник трансплантологии и искусственных органов. 2020;22(1):40-49. https://doi.org/10.15825/1995-1191-2020-1-40-49

For citation:


Artemov D.V., Zulkarnaev A.B., Vatazin A.V. Age-related features of the pattern of lymphocyte subpopulations and functional activity of peripheral blood mononuclear cells in patients with chronic kidney disease before and after transplantation. Russian Journal of Transplantology and Artificial Organs. 2020;22(1):40-49. (In Russ.) https://doi.org/10.15825/1995-1191-2020-1-40-49

Просмотров: 86


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1995-1191 (Print)
ISSN 2412-6160 (Online)