Preview

Russian Journal of Transplantology and Artificial Organs

Advanced search

SIBS triblock copolymers in cardiac surgery: in vitro and in vivo studies in comparison with ePTFE

https://doi.org/10.15825/1995-1191-2019-4-67-80

Abstract

Implantation of polymeric heart valves can solve the problems of existing valve substitutes – mechanical and biological. Objective: to comprehensively assess the hemocompatibility of styrene-isobutylene-styrene (SIBS) triblock copolymer, synthesized by controlled cationic polymerization in comparison with expanded polytetrafluoroethylene (ePTFE) used in clinical practice. Materials and methods. SIBS-based films were made by polymer solution casting method; in vitro biocompatibility assessment was performed using cell cultures, determining cell viability, cell adhesion and proliferation; tendency of materials to calcify was determined through in vitro accelerated calcification; in vivo biocompatibility assessment was performed by subcutaneous implantation of rat samples; hemocompatibility was determined ex vivo by assessing the degree of hemolysis, aggregation, and platelet adhesion. Results. The molecular weight of synthesized polymer was 33,000 g/mol with a polydispersity index of 1.3. When studying cell adhesion, no significant differences (p = 0.20) between the properties of the SIBS polymer (588 cells/mm2) and the properties of culture plastics (732 cells/mm2) were discovered. Cell adhesion for the ePTFE material was 212 cells/mm2. Percentage of dead cells on SIBS and ePTFE samples was 4.40 and 4.72% (p = 0.93), respectively, for culture plastic – 1.16% (p < 0.05). Cell proliferation on the ePTFE surface (0.10%) was significantly lower (p < 0.05) than for the same parameters for SIBS and culture plastic (62.04 and 44.00%). Implantation results (60 days) showed the formation of fibrous capsules with average thicknesses of 42 μm (ePTFE) and 58 μm (SIBS). Calcium content in the explanted samples was 0.39 mg/g (SIBS), 1.25 mg/g (ePTFE) and 93.79 mg/g (GA-xenopericardium) (p < 0.05). Hemolysis level of red blood cells after contact with SIBS was 0.35%, ePTFE – 0.40%, which is below positive control (p < 0.05). Maximum platelet aggregation of intact platelet-rich blood plasma was 8.60%, in contact with SIBS polymer – 18.11%, with ePTFE – 22.74%. Conclusion. In terms of hemocompatibility properties, the investigated SIBS polymer is not inferior to ePTFE and can be used as a basis for development of polymeric prosthetic heart valves.

About the Authors

M. A. Rezvova
Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation

Rezvova Maria Alexandrovna

6, Sosnoviy blvd, 650002, Kemerovo.
Tel. (913) 079-61-40



E. A. Ovcharenko
Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation
Kemerovo


P. A. Nikishev
Research Institute for Physical Chemical Problems; Faculty of Chemistry, Belarusian State University
Belarus
Minsk


S. V. Kostyuk
Research Institute for Physical Chemical Problems; Faculty of Chemistry, Belarusian State University; Institute of Regenerative Medicine, Sechenov First Moscow State Medical University
Belarus

Minsk

Moscow



L. V. Antonova
Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation
Kemerovo


T. N. Akent’eva
Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation
Kemerovo


T. V. Glushkova
Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation
Kemerovo


Y. G. Velikanova
Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation
Kemerovo


D. K. Shishkova
Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation
Kemerovo


E. O. Krivkina
Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation
Kemerovo


K. Yu. Klyshnikov
Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation
Kemerovo


Yu. A. Kudryavtseva
Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation
Kemerovo


L. S. Barbarash
Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation
Kemerovo


References

1. Manji RA, Ekser B, Menkis AH, Cooper DKC. Bioprosthetic heart valves of the future. Xenotransplantation. 2014; 21 (1): 1–10. doi: 10.1111/xen.12080. PMCID: PMC4890621.

2. Jaffer IH, Whitlock RP. A mechanical heart valve is the best choice. Heart Asia. 2016; 8 (1): 62–64. doi: 10.1136/heartasia-2015-010660. PMCID: PMC4898622.

3. Chambers J. Prosthetic heart valves. Int J Clin Pract. 2014; 68 (10): 1227–1230. doi: 10.1111/ijcp.12309. PMID: 24423099.

4. Smith M, Cantwell WJ, Guan Z, Tsopanos S, Theobald MD, Nurick GN et al. The quasi-static and blast response of steel lattice structures. Journal of Sandwich Structures and Materials. 2011; 13 (4): 479–501. doi: 10.1177/1099636210388983.

5. Hawreliak JA, Lind J, Maddox B, Barham M, Messner M, Barton N et al. Dynamic Behavior of Engineered Lattice Materials. Sci Rep. 2016; 6: 28094. doi: 10.1038/srep28094. PubMed PMID: 27321697. PubMed Central PMCID: PMC4913358.

6. Hasan A, Ragaert K, Swieszkowski W, Selimovic S, Paul A, Camci-Unal G et al. Biomechanical properties of native and tissue engineered heart valve constructs. Journal of Biomechanics. 2014; 47: 1949–1963. doi: http://dx.doi.org/10.1016/j.jbiomech.2013.09.023.

7. Базылев ВВ, Воеводин АБ, Раджабов ДА, Россейкин ЕВ. Первый опыт трансапикальной имплантации протеза аортального клапана «МедИнж». Бюллетень НЦССХ им. А.Н. Бакулева РАМН «Сердечно-сосудистые заболевания». 2016; 17 (6): 141.

8. Bezuidenhout D, Zilla P. Flexible leaflet polymeric heart valves. Cardiovasc Card Ther Devices. 2014; 15: 93–129.

9. Daebritz SH, Fausten B, Hermanns B, Franke A, Schroeder J, Groetzner J et al. New flexible polymeric heart valve prostheses for the mitral and aortic positions. Heart Surg Forum. 2004; 7 (5): 525–532. PMID: 15799940. doi: 10.1532/HSF98.20041083.

10. Chetta GE, Lloyd JR. The design, fabrication and evaluation prosthetic heart valve. J Biomech Eng. 1980; 102: 34–41. PMID: 7382451.

11. Jiang H, Campbell G, Boughner D, Wand WK, Quantz M. Design and manufacture of a polyvinyl alcohol (PVA) cryogel tri-leaflet heart valve prosthesis. Medical Engineering & Physics. 2004; 26: 269–277. PMID: 15121052. doi: 10.1016/j.medengphy.2003.10.007.

12. Quintessenza JA, Jacobs JP, Chai PJ, Morell VO, Lindberg H. Polytetrafluoroethylene bicuspid pulmonary valve implantation: experience with 126 patients. World J Pediatr Congenit Heart Surg. 2010; 1 (1): 20–27. PMID: 23804719. doi: 10.1177/2150135110361509.

13. Kidane AG, Burriesci G, Edirisinghe M, Ghanbari H, Bonhoeffer P et al. A novel nanocomposite polymer for development of synthetic heart valve leaflets. Acta Biomaterialia. 2009; 5: 2409–2417. PMID: 19497802. doi: 10.1016/j.actbio.2009.02.025.

14. Claiborne TE, Sheriff J, Kuetting M, Steinseifer U, Slepian MJ, Bluestein DJ. In vitro evaluation of a novel hemodynamically optimized trileaflet polymeric prosthetic heart valve. Biomech Eng. 2013; 135 (2): 021021. PMID: 23445066. PMCID: PMC5413125. doi: 10.1115/1.4023235.

15. Strickler F, Richard R, McFadden S, Lindquist J, Schwarz MC, Faust R et al. In vivo and in vitro characterization of poly(styrene-b-isobutylene-b-styrene) copolymer stent coatings for biostability, vascular compatibility and mechanical integrity. J Biomed Mater Res A. 2010 Feb; 92 (2): 773–782. doi: 10.1002/jbm.a.32418.

16. Pinchuk L, Wilson GJ, Barry JJ, Schoephoerster RT, Parel JM, Kennedy JP. Medical applications of poly(styreneblock-isobutylene-block-styrene) («SIBS»). Biomaterials. 2008; 29 (4): 448–460. PMID: 17980425. doi: 10.1016/j.biomaterials.2007.09.041.

17. Fray ME, Prowans P, Puskas JE, Altsta V. Biocompatibility and Fatigue Properties of Polystyrene-Polyisobutylene-Polystyrene, an Emerging Thermoplastic Elastomeric Biomaterial. Biomacromolecules. 2006, 7, 844–850.

18. Wang Q, McGoron AJ, Bianco R, Kato Y, Pinchuk L. Schoephoerster RT. In vivo assessment of a novel polymer (SIBS) trileaflet heart valve. J Heart Valve Dis. 2010; 19: 499–505. PMID: 20845899.

19. Duraiswamy N, Choksi TD, Pinchuk L, Schoephoerster RT. A phospholipid-modified polystyrene-polyisobutylene-polystyrene (SIBS) triblock polymer for enhanced hemocompatibility and potential use in artificial heart valves. J Biomater Appl. 2009; 23 (4): 367–379. doi: 10.1177/0885328208093854.

20. Claiborne TE, Slepian MJ, Hossainy S, Bluestein D. Polymeric trileaflet prosthetic heart valves: evolution and path to clinical reality. Expert Rev Med Devices. 2012; 9 (6): 577–594. doi: 10.1586/erd.12.51. PMID: 23249154. PMCID: PMC3570260.

21. Kaszas G, Puskas JE, Kennedy JP, Hager WG, Polym J. Sci. Part A: Polym. Chem. 1991, 29, 427–435. https://onlinelibrary.wiley.com/doi/abs/10.1002/pola.1991.080290316.

22. Lu S, Zhang P, Sun X, Gong F, Yang S, Shen L et al. Synthetic ePTFE grafts coated with an anti-CD133 antibody-functionalized heparin/collagen multilayer with rapid in vivo endothelialization properties. ACS Appl Mater Interfaces. 2013 Aug 14; 5 (15): 7360–7369. doi: 10.1021/am401706w.

23. Wiggins MJ, Wilkoff B, Anderson JM, Hiltner A. Biodegradation of polyether polyurethane inner insulation in bipolar pacemaker leads. J Biomed Mater Res. 2001; 58: 302–307.

24. Knoll A, Magerle R, Krausch G. Tapping Mode Atomic Force Microscopy on Polymers: Where Is the True Sample Surface? Macromolecules. 2001, 34, 4159–4165.

25. Bracaglia LG, Yu L, Hibino N, Fisher JP. Reinforced pericardium as a hybrid material for cardiovascular applications. Tissue Eng Part A. 2014 Nov; 20 (21–22): 2807–2816. doi: 10.1089/ten.TEA.2014.0516.

26. Jee KS, Kim YS, Park KD, Kim YH. A novel chemical modification of bioprosthetic tissues using L-arginine. Biomaterials. 2003 Sep; 24 (20): 3409–3416.

27. Hilbert S, Ferrans V, Tomita Y, Eidbo E, Jones M. Evaluation of explanted polyurethane trileaflet cardiac valve prostheses. Journal of Thoracic and Cardiovascular Surgery. 1987. 94 (3): 419–429.

28. Corvo MF, Dugan SW, Werth MS, Stevenson CM, Summers SA, Pohl DR et al. Cadaret Analytica AutoStart 150 mL Burette. NAMSA. 2008: 8.

29. Kakavand M, Yazdanpanah G, Ahmadiani A, Niknejad H. Blood compatibility of human amniotic membrane compared with heparin-coated ePTFE for vascular tissue engineering. J Tissue Eng Regen Med. 2017 Jun; 11 (6): 1701–1709. doi: 10.1002/term.2064.

30. Xia Ye, Ze Wang, Xianghua Zhang, Ming Zhou, Lan Cai. Hemocompatibility research on the micro-structure surface of a bionic heart valve. Bio-Medical Materials and Engineering. 2014; 24: 2361–2369.

31. Thevenot P, Hu W, Tang L. Surface chemistry influences implant biocompatibility. Curr Top Med Chem. 2008; 8 (4): 270–280.


Review

For citations:


Rezvova M.A., Ovcharenko E.A., Nikishev P.A., Kostyuk S.V., Antonova L.V., Akent’eva T.N., Glushkova T.V., Velikanova Y.G., Shishkova D.K., Krivkina E.O., Klyshnikov K.Yu., Kudryavtseva Yu.A., Barbarash L.S. SIBS triblock copolymers in cardiac surgery: in vitro and in vivo studies in comparison with ePTFE. Russian Journal of Transplantology and Artificial Organs. 2019;21(4):67-80. https://doi.org/10.15825/1995-1191-2019-4-67-80

Views: 1695


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1995-1191 (Print)