Preview

Russian Journal of Transplantology and Artificial Organs

Advanced search

Osteo-replacement properties of scleractinium coral aquaculture skeleton (experimental study)

https://doi.org/10.15825/1995-1191-2019-3-121-126

Abstract

Aim: to evaluate the osteo-replacement properties of the coral aquaculture skeleton of P. verrucosa and A. abrotanoides (CAS) on a model of a fenestral defect in the femur of rats in comparison with the natural coral skeleton of A. cervicornis (NCS).

Materials and methods. CAS grown at a Russian-Vietnamese tropical research and development technology center, as well as NCS were cleaned of organic residues, crushed into 300–600 μm granules, sterilized by γ-radiation (24 kGy) and used to fill bone defects in rat femur. Three groups of animals were formed according to the number of types of coral skeleton samples. Two animals were removed from the experiment every 3, 6, 9, 12 weeks. Tissues excised from implantation zones were fixed, decalcified in EDTA, and their histological slides stained with hematoxylin-eosin were prepared.

Results. There were no fundamental differences in the dynamics of replacement of bone defects with newly formed bone tissue after implantation of CAS and NCS. NCS, like CAS, were biocompatible and caused no inflammatory reactions in the implantation zone. In the defect area, there was good consolidation of NCS granules with the bone bed. Their bioresorption rates were also similar. Three weeks after implantation, periosteum grew over the defect zone and bone formation began by periosteal osteogenesis. By week 12, the defect area was filled with newly formed cancellous bone tissue with hematopoietic zones between the bone trabeculars.

Conclusion. The scleractinium coral aquaculture skeleton of P. verrucosa and A. abrotanoides has osteoplastic properties similar to those of the coral skeleton of A. cervicornis from natural settlements. 

About the Authors

A. A. Popov
N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of the Russian Federation
Russian Federation


V. A. Kirsanova
P.А. Hertsen Moscow Oncology Research Institute, Branch of Federal Medical Research Centre of Radiology of the Ministry of Healthcare of the Russian Federation
Russian Federation


I. K. Sviridova
P.А. Hertsen Moscow Oncology Research Institute, Branch of Federal Medical Research Centre of Radiology of the Ministry of Healthcare of the Russian Federation
Russian Federation


S. A. Akhmedova
P.А. Hertsen Moscow Oncology Research Institute, Branch of Federal Medical Research Centre of Radiology of the Ministry of Healthcare of the Russian Federation
Russian Federation


M. M. Filyushin
P.А. Hertsen Moscow Oncology Research Institute, Branch of Federal Medical Research Centre of Radiology of the Ministry of Healthcare of the Russian Federation
Russian Federation


N. S. Sergeeva
N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of the Russian Federation; P.А. Hertsen Moscow Oncology Research Institute, Branch of Federal Medical Research Centre of Radiology of the Ministry of Healthcare of the Russian Federation
Russian Federation
Sergeeva Natalia Sergeevna. Address: 3, 2 Botkinskiy proezd, Moscow, 125284. Теl. (495) 945-74-15.


References

1. Ulf M, Wikesjö E, Chong-Kwan K. Periodontal healing in one-wall intra-bony defects in dogs following implantation of autogenous bone or a coral-derived biomaterial. Journal Of Clinical Periodontology. 2005; 32 (6): 583– 589. doi: 10.1111/j.1600-051X.2005.00729.x. PMID: 15882215.

2. Puvaneswary S, Balaji Raghavendran HR, Ibrahim NS, Murali MR, Merican AM, Kamarul T. A comparative study on morphochemical properties and osteogenic cell differentiation within bone graft and coral graft culture systems. Int J Med Sci. 2013; 10 (12): 1608–1614. doi: 10.7150/ijms.6496. PMID: 24151432.

3. Chen F, Chen S, Tao K, Feng X, Liu Y, Lei D et al. Marrow-derived osteoblasts seeded into porous natural coral to prefabricate a vascularised bone graft in the shape of a human mandibular ramus: experimental study in rabbits. Oral Maxillo fac. Surg. 2004; 42: 532–537. doi: 10.1016/j.bjoms.2004.08.007. PMID: 15544883.

4. Cui L, Liu B, Liu G, Zhang W, Cen L, Sun J et al. Repair of cranial bone defects with adipose derived stem cells and coral scaffold in a canine model. Biomaterials. 2007; 28 (36): 5477–5486. doi: 10.1016/j.biomaterials.2007.08.042. PMID: 17888508.

5. Гурин АН, Комлев ВС, Федотов АЮ, Берковский АЛ, Мамонов ВЕ, Григорьян АС. Сравнительная характеристика материалов на основе хитозана, альгината и фибрина в комплексе с β-трикальцийфосфатом для остеопластики (экспериментально-морфологическое исследование). Стоматология. 2014; 1: 4–10. Gurin AN, Komlev VS, Fedotov AIu, Berkovskiĭ AL, Mamonov VE, Grigor’ian AS. Comparative study of osteoplastic materials based on chitosan, alginate or fibrin with tricalcium phosphate. Stomatology. 2014; 1: 4–10. [In Russ, English abstract].

6. Мураев АА, Бонарцев АП, Гажва ЮВ, Рябова ВМ, Волков АВ, Жаркова ИИ и др. Разработка и доклинические исследования ортотопических костных имплантатов на основе гибридной конструкции из поли-3-оксибутирата и альгината натрия. Современные технологии в медицине. 2016; 8 (4): 42–50. Muraev AA, Bonartsev AP, Gazhva YuV, Riabova VM, Volkov AV, Zharkova II et al. Development and preclinical studies of orthotopic bone implants based on a hybrid construction from poly(3-hydroxybutyrate) and sodium alginate. Sovremennye tehnologii v medicine. 2016; 8 (4): 42–50. [In Russ, English abstract] doi: 10.17691/ stm2016.8.4.06.

7. Котлярова МС, Архипова АЮ, Мойсенович АМ, Куликов ДА, Куликов АВ, Коньков АС и др. Биорезорбируемые скаффолды на основе фиброина для регенерации костной ткани. Вестник Московского университета. Серия 16: Биология. 2017; 72 (4): 222–228. Kotliarova MS, Arkhipova AY, Moysenovich AM, Kulikov DA, Kulikov AV, Kon’kov AS et al. Bioresorbable Scaffolds Based on Fibroin for Bone Tissue Regeneration. Moscow University Biological Sciences Bulletin. 2017; 72 (4): 222–228. [In Russ, English abstract].

8. Свиридова ИК, Сергеева НС, Франк ГА, Тепляков ВВ, Кирсанова ВА, Ахмедова СА и др. Скелет натуральных кораллов сем. Acropora в замещении дефекта костной ткани у мелких и крупных лабораторных животных. Клеточная трансплантология и тканевая инженерия. 2010; 5 (4): 43–48. Sviridova IK, Sergeeva NS, Frank GA, Teplyakov VV, Kirsanova VA, Akhmedova SA et al. A skeleton of Acropora corals in replacing bone tissue defects in small and large laboratory animals. Cellular Transplantation and Tissue Engineering. 2010; 5 (4): 43–48. [In Russ, English abstract].

9. Бритаев ТА, МихеевВН. Агрегированное размещение склерактиниевых кораллов влияет на структуру ассоциированных с ними симбиотических сообществ. Доклады Академии наук. 2013; 448 (5): 614–617. doi: 10.7868/S0869565213050289. Britaev TA, Miheev VN. Agregirovannoe razmeshchenie skleraktinievyh korallov vliyaet na strukturu associirovannyh s nimi simbioticheskih soobshchestv. Doklady Akademii nauk. 2013; 448 (5): 614–617. doi: 10.7868/S0869565213050289.

10. Сергеева НС, Свиридова ИК, Баринов СМ, Комлев ВС, Кирсанова ВА, Ахмедова СА и др. Комплексное изучение природных кораллов для решения проблем реконструкции/инженерии костной ткани. II. Изучение биосовместимости и остеокондуктивных потенций природных кораллов. Журнал технологии живых систем. 2012; 9 (10): 23–30. Sergeeva NS, Sviridova IK, Barinov SM, Komlev VS, Kirsanova VA, Akhmedova SA et al. Complex study of natural corals for bone tissue reconstruction/engineering. II. The study of biocompatibility and ostroconductive properties of natural corals. Technologies of Living Systems. 2012; 9 (10): 23–30. [In Russ, English abstract].

11. Сергеева НС, Свиридова ИК, Франк ГА, Кирсанова ВА, Ахмедова СА, Попов АА и др. Критерии биосовместимости материалов, предназначенных для замещения костных дефектов. Клеточные технологии в биологии и медицине. 2014; 2: 110–116. Sergeeva NS, Sviridova IK, Frank GA, Kirsanova VA, Akhmedova SA, Popov AA et al. Kriterii biosovmestimosti materialov, prednaznachennyh dlya zameshcheniya kostnyh defektov. Kletochnye tekhnologii v biologii i medicine. 2014; 2: 110–116.

12. Сергеева НС, Бритаев ТА, Свиридова ИК, Ахмедова СА, Кирсанова ВА, Попов АА и др. Скелет аквакультур склерактиниевых кораллов как возможный 3D матрикс для клеточных культур и инженерии костной ткани. Бюллетень экспериментальной биологии и медицины. 2013; 10: 494–498. Sergeeva NS, Britaev TA, Sviridova IK, Akhmedova SA, Kirsanova VA, Popov AA et al. Scleractinium Coral Aquaculture Skeleton: a Possible 3D Scaffold for Cell Cultures and Bone Tissue Engineering. Bulletin of Experimental Biology and Medicine. 2013; 10: 494–498. [In Russ, English abstract].

13. Wu YC, Lee TM, Chiu KH, Shaw SY, Yang CY. A comparative study of the physical and mechanical properties of three natural corals based on the criteria for bonetissue engineering scaffolds. J Mater Sci: Mater Med. 2009; 20:1273–1280. doi: 10.1007/s10856-009-3695-3. PMID: 19267261.

14. Попов АА, Сергеева НС, Бритаев ТА, Комлев ВС, Свиридова ИК, Кирсанова ВА и др. Некоторые физико-химические и биологические характеристики образцов скелета аквакультур склерактиниевых кораллов, предназначенных для реконструкции/ инженерии костной ткани. Бюллетень экспериментальной биологии и медицины. 2015; 4: 490–495. Popov AA, Sergeeva NS, Britaev TA, Komlev VS, Sviridova IK, Kirsanova VA et al. Some Physical, Chemical, and Biological Parameters of Samples of Scleractinium Coral Aquaculture Skeleton Used for Reconstruction/ Engineering of the Bone Tissues. Bulletin of Experimental Biology and Medicine. 2015; 4: 490–495. [In Russ, English abstract] doi 10.1007/s10517-015-3001-y.

15. Macha IJ, Ben-Nissan B. Marine Skeletons: Towards Hard Tissue Repair and Regeneration. Mar Drugs. 2018; 16 (7): 225. doi: 10.3390/md16070225. PMID: 30004435.

16. Manassero M, Viateau V, Deschepper M, Oudina K, Logeart-Avramoglou D, Petite H et al. Bone Regeneration in Sheep Using Acropora Coral, a Natural Resorbable Scaffold, and Autologous Mesenchymal Stem Cells. Tissue engineering: part A. 2013; 19 (13): 1554–1563. doi: 10.3390/md16070225. PMID: 23427828.

17. Rocha RJ, Silva AM, Fernandes MH, Cruz IC, Rosa R, Calado R. Contrasting Light Spectra Constrain the Macro and Microstructures of Scleractinian Corals. PLoS One. 2014 9 (8): e105863. doi: 10.1371/journal. pone.0105863. PMID: 25170981.

18. Liu G, Zhang Y, Liu B, Sun J, Li W, Cui L. Bone regeneration in a canine cranial model using allogeneic adipose derived stem cells and coralscaffold. Biomaterials. 2013; (11): 2655–2664. doi: 10.1016/j.biomaterials.2013.01.004. PMID: 23343633.

19. Green DW, Ben-Nissan B, Yoon KS, Milthorpe B, Jung HS. Natural and Synthetic Coral Biomineralization for Human Bone Revitalization. Trends Biotechnol. 2017; (1): 43–54. doi: 10.1016/j.tibtech.2016.10.003. PMID: 27889241.

20. Сергеева НС, Свиридова ИК, Баринов СМ, Комлев ВС, Кирсанова ВА, Ахмедова СА и др. Комплексное изучение природных кораллов для решения проблем реконструкции/инженерии костной ткани. I. Изучение физико-химических и матриксных (для клеток) свойств природных кораллов. Технологии живых систем. 2012; 9 (8): 3–13. Sergeeva NS, Sviridova IK, Barinov SM, Komlev VS, Kirsanova VA, Akhmedova SA et al. Complex study of natural corals for bone tissue reconstruction/engineering. I. The study of physicochemical and cell matrix properties of natural corals. Technologies of Living Systems. 2012; 9 (8): 3–13. [In Russ, English abstract].

21. Тепляков ВВ, Мыслевцев ИВ, Бухаров АВ, Сергеева НС, Франк ГА, Свиридова ИК и др. Скелет кораллов семейства Acropora в качестве материала для замещения костных дефектов у больных с доброкачественными опухолями костей (экспериментально-клиническое исследование). Российский онкологический журнал. 2011; 3: 32–35. Teplyakov VV, Myslevcev IV, Buharov AV, Sergeeva NS, Frank GA, Sviridova IK et al. Skelet korallov semejstva Acropora v kachestve materiala dlya zameshcheniya kostnyh defektov u bol’nyh s dobrokachestvennymi opuholyami kostej (eksperimental’no-klinicheskoe issledovanie). Rossijskij onkologicheskij zhurnal. 2011; 3: 32–35.


Review

For citations:


Popov A.A., Kirsanova V.A., Sviridova I.K., Akhmedova S.A., Filyushin M.M., Sergeeva N.S. Osteo-replacement properties of scleractinium coral aquaculture skeleton (experimental study). Russian Journal of Transplantology and Artificial Organs. 2019;21(3):121-126. https://doi.org/10.15825/1995-1191-2019-3-121-126

Views: 599


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1995-1191 (Print)