Preview

Вестник трансплантологии и искусственных органов

Расширенный поиск

Современные возможности регенеративной медицины: биофабрикация полых органов

https://doi.org/10.15825/1995-1191-2019-2-92-103

Полный текст:

Аннотация

Для лечения пациентов с поврежденными или удаленными по медицинским показаниям органами в настоящее время применяют трансплантацию от доноров. Высокие риски летального исхода, проведение пожизненной иммуносупрессии и острая нехватка донорских органов ухудшают перспективу их применения. Недавние достижения в области биофабрикации свидетельствуют о скорой возможности появления реальных альтернатив методам, применяемым в настоящее время. Используемые биоматериалы создают трехмерное пространство, в котором клетки могут прикрепляться, расти и формировать новые ткани с соответствующей структурой и функцией. Современные исследования уделяют особое внимание выбору материала и технологий для обеспечения механических и физиологических свойств заново созданной ткани. В обзоре рассмотрены современные технологии регенеративной медицины, а также результаты экспериментальных исследований в области биофабрикации по созданию скаффолдов, тканеинженерных конструкций, а также полых и фрагментов сложносоставных органов, которые уже имеют практическую реализацию.

Об авторах

Е. С. Евстратова
ФГБУ «НМИЦ радиологии» Минздрава России
Россия

Обнинск



П. В. Шегай
ФГБУ «НМИЦ радиологии» Минздрава России; ФГАОУ ВО Российский университет дружбы народов
Россия

Обнинск, Москва



С. В. Попов
ФГАОУ ВО Российский университет дружбы народов
Россия

Попов Сергей Витальевич

117198, Москва, ул. Миклухо-Маклая, дом 6, Тел. (910) 477-95-65



Н. В. Воробьев
Московский научно-исследовательский онкологический институт им. П.А. Герцена - филиал ФГБУ «НМИЦ радиологии» Минздрава России
Россия


С. А. Иванов
Медицинский радиологический научный центр им. А.Ф. Цыба - филиал ФГБУ «НМИЦ радиологии» Минздрава Россиия; ФГАОУ ВО Российский университет дружбы народов
Россия

Обнинск, Москва



А. Д. Каприн
ФГБУ «НМИЦ радиологии» Минздрава России; Московский научно-исследовательский онкологический институт им. П.А. Герцена - филиал ФГБУ «НМИЦ радиологии» Минздрава России; ФГАОУ ВО Российский университет дружбы народов
Россия

Обнинск, Москва



Список литературы

1. Готье С.В, Хомяков СМ. Оценка потребности населения в трансплантации органов, донорского ресурса и планирование эффективной сети медицинских организаций (центров трансплантации). Вестник трансплантологии и искусственных органов. 2013; XV (3): 11-24.

2. Миронов ВА. 3D-биопечать: любые органы на заказ. Инициативы XXI века. 2013; 4: 94-100.

3. Горбатов РО, Романов АД. Создание органов и тканей с помощью биопечати. Вестник ВолгГМУ. 2017; 3 (63): 3-9.

4. Faris RA, Konkin T, Halpert G. Liver stem cells: a potential source of hepatocytes for the treatment of human liver disease. Artif Organs. 2001; 25: 513-521.

5. Shinoka T, Shum-Tim D, Ma PXet al. Tissue-engineered heart valve leaflets: does cell origin affect outcome? Circulation. 1997; 96: II-102-07.

6. Atala A. Engineering organs. Current Opinion in Biotechnology. 2009; 20: 575-592.

7. Baptista PM, Siddiqui MM, Lozier G et al. The use of whole organ decellularization for the generation of a vascularized liver organoid. Hepatology. 2011; 53: 604-617.

8. Song JJ, Guyette JP, Gilpin SE et al. Regeneration and experimental orthotopic transplantation of a bioengineered kidney. Nat. Med. 2013; 19: 646-651.

9. Hamilton NJ, Kanani M, Roebuck DJ et al. Tissue-engineered tracheal replacement in a child: a 4-year followup study. Am. J. Transplant. 2015; 15 (10): 2750-2757.

10. Maemura T, Shin M, Kinoshita Met al. A tissue-engineered stomach shows presence of proton pump and G-cells in a rat model, resulting in improved anemia following total gastrectomy. Artif. Organs. 2008; 32 (3): 234-239.

11. Sala FG, Kunisaki SM, Ochoa ER et al. Tissue-engineered small intestine and stomach form from autologous tissue in a preclinical large animal model. J. Surg. Res. 2009; 156 (2): 205-212.

12. Bitar KN, Raghavan S. Intestinal tissue engineering: current concepts and future vision of regenerative medicine in the gut. NeurogastroenterolMotil. 2012; 24 (1): 7-9.

13. Bitar KN, Zakhem E. Tissue engineering and regenerative medicine as applied to the gastrointestinal tract. Curr. Opin. Biotechnol. 2013; 24 (5): 909-915.

14. Hendow EK, Guhmann P, Wright B et al. Biomaterials for hollow organ tissue engineering. Fibrogenesis & Tissue Repair. 2016; 9: 3.

15. Bonandrini B, Figliuzzi M, Papadimou E et al. Recel-lularization of well-preserved acellular kidney scaffold using embryonic stem cells. Tissue Eng. Part A. 2014; 20: 1486-1498.

16. Elliott MJ, De Coppi P, Speggiorin S et al. Stem-cell-based, tissue engineered tracheal replacement in a child: a 2-year follow-up study. Lancet. 2012; 380: 994-1000.

17. Basu J, Bertram TA. Regenerative Medicine of the Gastrointestinal Tract. Toxicologic Pathology. 2014; 42: 82-90.

18. Wang A, Tang Z, Park IH et al. Induced pluripotent stem cells for neural tissue engineering. Biomaterials. 2011; 32: 5023-5032.

19. Atala A, Lanza RP. Preface. Methods of Tissue Engineering. San Diego, CA: Academic Press; 2001.

20. Kang H-W, Lee SJ, Ko IK et al. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nature Biotechnology. 2016; 34: 312-319.

21. Chen F, Yoo JJ, Atala A. Acellular collagen matrix as a possible ‘off the shelf’ biomaterial for urethral repair. Urology. 1999; 54 (3): 407-410.

22. Atala A. Engineering tissues, organs and cells. J. Tissue. Eng. Regen. Med. 2007; 1: 83-96.

23. Versteegden LR, van Kampen KA, Janke HP et al. Tubular collagen scaffolds with radial elasticity for hollow organ regeneration. Acta Biomaterialia. 2017; 52: 1-8.

24. Liebert M, Hubbel A, Chung M et al. Expression of mal is associated with urothelial differentiation in vitro: identification by differential display reversetranscripta-se polymerase chain reaction. Differentiation. 1997; 61: 177-185.

25. Atala A. Autologous cell transplantation for urologic reconstruction. J. Urol. 1998; 159: 2-3.

26. Yoo JJ, Meng J, Oberpenning F, Atala A. Bladder augmentation using allogenic bladder submucosa seeded with cells. Urology. 1998; 51: 221-225.

27. Oberpenning F, Meng J, Yoo JJ et al. De novo reconstitution of a functional mammalian urinary bladder by tissue engineering. Nat. Biotechnol. 1999; 17: 149-155.

28. Koh CJ, Atala A. Tissue engineering, stem cells, and cloning: opportunities for regenerative medicine. J. Am. Soc. Nephrol. 2004; 15: 1113-1125.

29. Li ST. Biologic biomaterials: tissue derived biomaterials (collagen). The Biomedical Engineering Handbook. FL: CRS Press; 1995: 627-647.

30. Chattopadhyay S, Raines RT. Review collagen-based biomaterials for wound healing. Biopolymers. 2014; 101: 821-833.

31. Dong C, Lv Y. Application of collagen scaffold in tissue engineering: recent advances and new perspectives. Polymers. 2016; 8: 42.

32. Versteegden LR, Hoogenkamp HR, Lomme RM et al. Design of an elasticized collagen scaffold: a method to induce elasticity in a rigid protein. Acta Biomater. 2016; 15: 277-85.

33. Rowley JA, Madlambayan G, Mooney DJ. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials. 1999; 20: 45-53.

34. Campbell PG, Weiss LE. Tissue engineering with the aid of inkjet printers. Expert. Opin. Biol. Ther. 2007; 7: 1123-1127.

35. Boland T, Xu T, Damon B et al. Application of inkjet printing to tissue engineering. Biotechnol. J. 2006; 1: 910-917.

36. Xu T, Rohozinski J, Zhao W et al. Inkjet-mediated gene transfection into living cells combined with targeted delivery. Tissue Eng. Part A. 2009; 15: 95-101.

37. Ilkhanizadeh S, Teixeira AI, Hermanson O. Inkjet printing of macromolecules on hydrogels to steer neural stem cell differentiation. Biomaterials. 2007; 28: 39363943.

38. Садовой МА, Ларионов ПМ, Самохин АГ, Рожнова ОМ. Клеточные матрицы для целей регенерации кости: современное состояние проблемы. 2014; 2: 79-86.

39. Новочадов ВВ, Семенов ПС, Лябин МП. Инновационные подходы к оптимизации скаффолд-техноло-гий на основе хитозана в тканевой инженерии суставного хряща. Вестн. Волгогр. гос. ун-та. Сер. 10, Иннов. деят. 2013; 2 (9): 135-143.

40. Новочадов ВВ. Проблема управления клеточным заселением и ремоделированием тканеинженерных матриц для восстановления суставного хряща (обзор литературы). Вестн. Волгогр. гос. ун-та. Сер. 11, Ес-теств. науки. 2013; 1 (5): 19-28.

41. Gilpin A, Yang Y. Decellularization strategies for regenerative medicine: from processing techniques to applications. Biomed. Res. Int. 2017; 983-1534.

42. Maghsoudlou P, Georgiades F, Smith H et al. Optimization of liver decellularization maintains extracellular matrix micro-architecture and composition predisposing to effective cell seeding. PLoS ONE. 2016; 11: e0155324.

43. Maghsoudlou P, Georgiades F, Tyraskis A et al. Preservation of micro-architecture and angiogenic potential in a pulmonary acellular matrix obtained using intermittent intratracheal flow of detergent enzymatic treatment. Biomaterials. 2013; 34: 6638-6648.

44. Chen F, Yoo JJ, Atala A. Acellular collagen matrix as a possible ‘‘off the shelf’’ biomaterial for urethral repair. Urology. 1999; 54: 407-410.

45. Reed AM, Gilding DK. Biodegradable polymers for use in surgery - poly(glycolic)/poly(lactic acid) homo and copolymers: 2. In vitro degradation. Polymer. 1981; 22 (4): 494-498.

46. Eberli D, Filho LF, AtalaA et al. Composite scaffolds for the engineering of hollow organs and tissues. Methods. 2009; 47: 109-115.

47. Bacakova L, Filova E, Rypacek F et al. Cell adhesion on artificial materials for tissue engineering. Physiol. Res. 2004; 53 (Suppl 1): S35-45.

48. le Roux PJ. Endoscopic urethroplasty with unseeded small intestinal submucosa collagen matrix grafts: a pilot study. J. Urol. 2005; 173: 140-143.

49. Fu Q, Deng CL, Liu W et al. Urethral replacement using epidermal cellseeded tubular acellular bladder collagen matrix. BJUInt. 2007; 99: 1162-1165.

50. Li C, Xu Y, Song L et al. Preliminary experimental study of tissue-engineered urethral reconstruction using oral keratinocytes seeded on BAMG. Urol. Int. 2008; 81: 290-295.

51. Guan Y, Ou L, Hu G et al. Tissue engineering of urethra using human vascular endothelial growth factor gene-modified bladder urothelial cells. Artif Organs. 2008; 32: 91-99.

52. Master VA, Wei G, Liu W et al. Urothlelium facilitates the recruitment and trans-differentiation of fibroblasts into smooth muscle in acellular matrix. J. Urol. 2003; 170: 1628-1632.

53. Leonhauser D, Stollenwerk K, Seifarth V et al. Two differentially structured collagen scaffolds for potential urinary bladder augmentation: proof of concept study in a Gottingen minipig model. J TranslMed. 2017; 15: 3.

54. Hoogenkamp HR, Pot MW, Hafmans TG et al. Scaffolds for whole organ tissue engineering: Construction and in vitro evaluation of a seamless, spherical and hollow collagen bladder construct with appendices. Acta Biomaterial. 2016; 43; 112-121.

55. Atala A, Bauer SB, Soker S et al. Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet. 2006; 367 (9518): 1241-1246.

56. Atala A. Tissue engineering of human bladder. British Medical Bulletin. 2011; 97: 81-104.

57. Rouwkema J, Rivron NC, van Blitterswijk CA. Vascularization in tissue engineering. Trends Biotechnol. 2008; 26: 434-441.

58. Zhao X, Irvine SA, Agrawal A et al. 3D patterned substrates for bioartificial blood vessels - the effect of hydrogels on aligned cells on a biomaterial surface. Acta Biomater. 2015; 26: 159-168.

59. Yao L, Liu J, Andreadis ST. Composite fibrin scaffolds increase mechanical strength and preserve contractility of tissue engineered blood vessels. Pharm. Res.-Dordr. 2008; 25 (5): 1212-1221.

60. Singh RK, Seliktar D, Putnam AJ. Capillary morphogenesis in PEG-collagen hydrogels. Biomaterials. 2013; 34 (37): 9331-9340.

61. Moon JJ, Saik JE, Poche RA. Biomimetic hydrogels with pro-angiogenic properties. Biomaterials. 2010; 31 (14): 3840-3847.

62. Watanabe M, Shin’oka T, Tohyama S et al. Tissue engineered vascular autograft: inferior vena cava replacement in a dog model. Tissue Eng. 2001; 7 (4): 429-439.

63. Ott HC, Matthiesen TS, Goh SK et al. Perfusion-decel-lularized matrix: using nature’s platform to engineer a bioartificial heart. Nat. Med. 2008; 14: 213-221.

64. Wainwright JM, Czajka CA, Patel UB et al. Preparation of cardiac extracellular matrix from an intact porcine heart. Tissue Eng. Part. C. Methods. 2010; 16: 525-532.

65. Oberwallner B, Brodarac A, Choi YH et al. Preparation of cardiac extracellular matrix scaffolds by decellulari-zation of human myocardium. J. Biomed. Mater. Res. A. 2014; 102 (9): 3263-3272.

66. Zimmermann WH, Melnychenko I, Wasmeier G et al. Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. Nat. Med. 2006; 12: 452-458.

67. Rodrigues MT, Lee SJ, Gomes ME et al. Amniotic fluid-derived stem cells as a cell source for bone tissue engineering. Tissue. Eng. A. 2012; 18: 2518-2527.

68. Williams C, Xie AW, Emani S et al. A comparison of human smooth muscle and mesenchymal stem cells as potential cell sources for tissue-engineered vascular patches. Tissue Eng. A. 2012; 18: 986-998.

69. Ladd MR, Lee SJ, Stitzel JD et al. Co-electrospun dual scaffolding system with potential for muscle-tendon junction tissue engineering. Biomaterials. 2011; 32: 1549-1559.

70. Liu H, Li X, Zhou G et al. Electrospun sulfated silk fibroin nanofibrous scaffolds for vascular tissue engineering. Biomaterials. 2011; 32: 3784-3793.

71. Nakase Y, Nakamura T, Kin S et al. Intra-thoracic esophageal replacement by in situ tissue-engineered esophagus. J. Thorac. Cardiovasc. Surg. 2008; 136: 850-859.

72. Basu J, Mihalko KL, Payne R et al. Extension of bladder based organ regeneration platform for tissue engineering of esophagus. Med. Hypotheses. 2012; 78: 231-234.

73. Basu J, Mihalko KL, Rivera EA et al. Tissue engineering of esophagus and small intestine in rodent injury models. Methods Mol. Biol. 2013; 1001: 311-324.

74. Saxena AK, Kofler K, Ainodhofer H et al. Esophagus tissue engineering: hybrid approach with esophageal epithelium and unidirectional smooth muscle tissue component generation in vitro. J. Gastrointest. Surg. 2009; 13: 1037-1043.

75. Badylak SF, Vorp DA, SpievackAR et al. Esophageal reconstruction with ECM and muscle tissue in a dog model. J. Surg. Res. 2005; 128: 87-97.

76. Tan B, Wei RQ, Tan MY et al. Tissue engineered esophagus by mesenchymal stem cell seeding for esophageal repair in a canine model. J. Surg. Res. 2013; 182 (1): 40-48.

77. Othman R, Morris GE, Shah DA et al. An automated fabrication strategy to create patterned tubular architectures at cell and tissue scales. Biofabrication. 2015; 7 (2): 025003.

78. Speer AL, Sala FG, Matthews JA et al. Murine tissue-engineered stomach demonstrates epithelial differentiation. J. Surg. Res. 2011; 171: 6-14.

79. Nakatsu H, Ueno T, Oga A et al. Influence of mesenchymal stem cells on stomach tissue engineering using small intestinal submucosa. J. Tissue Eng. Regen. Med. 2015; 9: 296-304.

80. Hori Y, Nakamura T, Kimura D et al. Experimental study on tissue engineering of the small intestine by mesenchymal stem cell seeding. J. Surg. Res. 2002; 102: 156-160.

81. Grikscheit TC, Siddique A, Ochoa ER et al. Tissue-engineered small intestine improves recovery after massive small bowel resection. Ann. Surg. 2004; 240: 748-754.

82. Grikscheit TC, Ochoa ER, Ramsanahie A et al. Tissue-engineered large intestine resembles native colon with appropriate in vitro physiology and architecture. Ann. Surg. 2003; 238: 35-41.

83. Sala FG, Matthews JA, Speer AL et al. A multicellular approach forms a significant amount of tissue-engineered small intestine in the mouse. Tissue Eng. A. 2011; 17: 1841-1850.

84. Qin HH, Dunn JC. Small intestinal submucosa seeded with intestinal smooth muscle cells in a rodent jejunal interposition model. J. Surg. Res. 2011; 171: e21-26.

85. Nakase Y, Hagiwara A, Nakamura T et al. Tissue engineering of small intestinal tissue using collagen sponge scaffolds seeded with smooth muscle cells. Tissue Eng. 2006; 12 (2): 403-412.

86. Lee M, Wu BM, Stelzner M et al. Intestinal smooth muscle cell maintenance by basic fibroblast growth factor. Tissue Eng. Part A. 2008; 14 (8): 1395-1402.

87. Bitar KN, Zakhem E. Tissue engineering and regenerative medicine as applied to the gastrointestinal tract. Curr. Opin. Biotechnol. 2013; 24 (5): 909-915.

88. Zakhem E, Raghavan S, Gilmont RR et al. Chitosan-based scaffolds for the support of smooth muscle constructs in intestinal tissue engineering. Biomaterials. 2012; 33: 4810-4817.

89. Raghavan S, Lam MT, Foster LL et al. Bioengineered three-dimensional physiological model of colonic longitudinal smooth muscle in vitro. Tissue Eng. C. Methods. 2010; 16: 999-1009.

90. Vermeulen N, Haddow G, Seymour T et al. 3D bioprint me: a socioethical view of bioprinting human organs and tissues. J. Med. Ethics. 2017; 43: 618-624.

91. Gilbert F, O ’Connell CD, Mladenovska T et al. Print Me an Organ? Ethical and Regulatory Issues Emerging from 3D Bioprinting in Medicine Sci. Eng. Ethics. 2018; 24: 73-91.


Для цитирования:


Евстратова Е.С., Шегай П.В., Попов С.В., Воробьев Н.В., Иванов С.А., Каприн А.Д. Современные возможности регенеративной медицины: биофабрикация полых органов. Вестник трансплантологии и искусственных органов. 2019;21(2):92-103. https://doi.org/10.15825/1995-1191-2019-2-92-103

For citation:


Evstratova E.S., Shegay P.V., Popov S.V., Vorobyev N.V., Ivanov S.A., Kaprin А.D. Modern opportunities of regenerative medicine: biofabrication of hollow organs. Russian Journal of Transplantology and Artificial Organs. 2019;21(2):92-103. (In Russ.) https://doi.org/10.15825/1995-1191-2019-2-92-103

Просмотров: 19


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1995-1191 (Print)
ISSN 2412-6160 (Online)