BIOMECHANICAL REMODELING OF BIODEGRADABLE SMALL-DIAMETER VASCULAR GRAFTS IN SITU
https://doi.org/10.15825/1995-1191-2016-2-99-109
Abstract
Aim: to evaluate the biomechanical remodeling of polymer grafts modified with vascular endothelial growth factor (VEGF) after implantation into rat abdominal aorta.
Materials and methods. Vascular grafts of2 mmdiameter were fabricated by electrospinning from polycaprolactone (PCL) and a mixture of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) and PCL. The grafts were modified with VEGF by biphasic electrospinning. Morphology of the grafts was assessed by scanning electron microscopy. Physico-mechanical properties of PCL and PHBV/PCL grafts were estimated using uniaxial tensile test and physiological circulating system equipped with state-of-theart ultrasound vascular wall tracking system. Physico-mechanical testing of PCL/VEGF and PHBV/PCL/VEGF was performed before and after implantation into rat abdominal aorta for 6 months. The modeling of coronary artery bypass grafting (CABG) was performed by finite element analysis for modified grafts.
Results. Durability of PCL and PHBV/PCL grafts did not differ from that of human internal mammary artery; however, elasticity and stiffness of these grafts were higher compared to internal mammary artery. Viscoelastic properties of the grafts were comparable to those of native blood vessels. Modification of the grafts with VEGF reduced material stiffness. Six months postimplantation, PCL/VEGF and PHBV/PCL/VEGF were integrated with aortic tissue that induced changes in the physico-mechanical properties of the grafts similar to the native vessel. Biomechanical modeling confirmed the functioning of modified grafts in bypass position for CABG.
Conclusion. PCL/VEGF and PHBV/PCL/VEGF grafts have satisfactory physico-mechanical properties and can be potentially used in the reconstruction of blood vessels.
About the Authors
T. V. GlushkovaRussian Federation
For correspondence: Glushkova Tatyana Vladimirovna. Address: 6, Sosnoviy blvd, Kemerovo, 650002, Russian Federation. Tel. (3842) 64-46-50. E-mail: bio.tvg@mail.ru
V. V. Sevostyanova
Russian Federation
L. V. Antonova
Russian Federation
K. Yu. Klyshnikov
Russian Federation
E. A. Ovcharenko
Russian Federation
E. A. Sergeeva
Russian Federation
G. Yu. Vasyukov
Russian Federation
A. M. Seifalian
United Kingdom
L. S. Barbarash
Russian Federation
References
1. Roth GA, Forouzanfar MH, Moran AE, Barber R, Nguyen G, Feigin VL et al. Demographic and epidemiologic drivers of global cardiovascular mortality. N Engl J Med. 2015; 372: 1333–1341. DOI: 10.1056/NEJMoa1406656.
2. Desai M, Seifalian AM, Hamilton G. Role of prosthetic conduits in coronary artery bypass grafting. Eur Cardiothorac Surg. 2011; 40 (2): 394–398. DOI: 10.1016/j. ejcts.2010.11.050
3. Li S, Sengupta D, Chien S. Vascular tissue engineering: from in vitro to in situ. WIREs Systems Biology and Medicine. 2014; 6 (1): 61–76. DOI: 10.1002/wsbm.1246.
4. Rocco KA, Maxfield MW, Best CA, Dean EW, Breuer CK. In vivo applications of electrospun tissue-engineered vascular grafts: a review. Tissue Eng Part B Rev. 2014; 20 (6): 628–640. DOI: 10.1089/ten.TEB.2014.0123.
5. Антонова ЛВ, Севостьянова ВВ, Сейфалиан АМ, Матвеева ВГ, Великанова ЕА, Сергеева ЕА и др. Сравнительное тестирование in vitro биодеградируемых сосудистых имплантов для оценки перспективы использования в тканевой инженерии. Комплексные проблемы сердечно-сосудистых заболеваний. 2015; 4: 34–41. DOI: 10.17802/2306-1278-2015-4-34-41. Antonova LV, Sevostyanova VV, Seifalian AM, Matveeva VG, Velikanova EA, Sergeeva EA. Comparative in vitro testing of biodegradable vascular grafts for tissue engineering applications. Complex Issues of Cardiovascular Diseases. 2015; 4: 34–41. DOI: 10.17802/23061278-2015-4-34-41 [In Russ, English abstract].
6. Melchiorri AJ, Hibino N, Fisher JP. Strategies and techniques to enhance the in situ endothelialization of smalldiameter biodegradable polymeric vascular grafts. Tissue Eng Part B Rev. 2013; 19 (4): 292–307. DOI: 10.1089/ ten.TEB.2012.0577.
7. Севостьянова ВВ, Головкин АС, Антонова ЛВ, Глушкова ТВ, Барбараш ОЛ, Барбараш ЛС. Модификация матриксов из поликапролактона сосудистым эндотелиальным фактором роста для потенциального применения в разработке тканеинженерных сосудистых графтов. Гены & Клетки. 2015; X (1): 91–97. Sevostyanova VV, Golovkin AS, Antonova LV, Glushkova TV, Barbarash OL, Barbarash LS. Modification of polycaprolactone scaffolds with vascular endothelial growth factors for potential application in development of tissue engineered vascular grafts. Genes & Cells. 2015; X (1): 91–97 [In Russ, English abstract].
8. Montini-Ballarin F, Calvo D, Caracciolo PC, Rojo F, Frontini PM, Abraham GA et al. Mechanical behavior of bilayered small-diameter nanofibrous structures as biomimetic vascular grafts. Journal of the Mechanical Behavior of Biomedical Materials. 2016; 60: 220–233. DOI:10.1016/j.jmbbm.2016.01.025.
9. Catto V, Farè S, Cattaneo I, Figliuzzi M, Alessandrino A, Freddi G et al. Small diameter electrospun silk fibroin vascular grafts: Mechanical properties, in vitro biodegradability, and in vivo biocompatibility. Mater Sci Eng C Mater Biol Appl. 2015; 54: 101–111. DOI: 10.1016/j. msec.2015.05.003.
10. Овчаренко ЕА, Клышников КЮ, Глушкова ТВ, Бураго АЮ, Журавлева ИЮ. Нелинейная изотропная модель корня аорты человека. Технологии живых систем. 2014; 6: 43–47. Ovcharenko EA, Klyshnikov KU, Glushkova TV, Burago AY, Zhuravleva IY. Nelinejnaja izotropnaja model’ kornja aorty cheloveka. Technologii zhivyh sistem. 2014; 6: 43–47 [In Russ, English abstract].
11. Claes E, Atienza JM, Guinea GV, Rojo FJ, Bernal JM, Revuelta JM et al. Mechanical properties of human coronary arteries. Conf Proc IEEE Eng Med Biol Soc. 2010; 2010: 3792–3795. DOI: 10.1109/IEMBS.2010.5627560. PubMed PMID: 21096878.
12. Singh C, Wong CS, Wang X. Medical Textiles as Vascular Implants and Their Success to Mimic Natural Arteries. J. Funct. Biomater. 2015; 6 (3): 500–525. DOI:10.3390/ jfb6030500.
13. Tiwari A, Cheng KS, Salacinski H, Hamilton G, Seifalian AM. Improving the patency of vascular bypass grafts: the role of suture materials and surgical techniques on reducing anastomotic compliance mismatch. Eur J Vasc Endovasc Surg. 2003; 25 (4): 287–295. PMID: 12651165.
14. Ovcharenko EA, Klyshnikov KU, Yuzhalin AE, Savrasov GV, Kokov AN, Batranin AV et al. Modeling of transcatheter aortic valve replacement: Patient specific vs general approaches based on finite element analysis. Computers in Biology and Medicine. 2016; 69: 29–36. DOI: 10.1016/j.compbiomed.2015.12.001.
Review
For citations:
Glushkova T.V., Sevostyanova V.V., Antonova L.V., Klyshnikov K.Yu., Ovcharenko E.A., Sergeeva E.A., Vasyukov G.Yu., Seifalian A.M., Barbarash L.S. BIOMECHANICAL REMODELING OF BIODEGRADABLE SMALL-DIAMETER VASCULAR GRAFTS IN SITU. Russian Journal of Transplantology and Artificial Organs. 2016;18(2):99-109. (In Russ.) https://doi.org/10.15825/1995-1191-2016-2-99-109