Preview

Russian Journal of Transplantology and Artificial Organs

Advanced search

Assessment of blood hemolysis during optimization of the RotaFlow centrifugal pump impeller

https://doi.org/10.15825/1995-1191-2025-3-117-124

Abstract

This study focuses on the evaluation of a modernized impeller for the RotaFlow centrifugal pump (Maquet, Germany), carried out as part of efforts to design a domestic counterpart. The proposed impeller features a combination of primary elongated blades, responsible for generating the majority of pressure, and secondary shortened blades. The investigation examined pump performance under extracorporeal membrane oxygenation (ECMO) therapy conditions at a pressure of 350 mmHg and flow rate of 5 L/min. Computational analyses were conducted to evaluate fluid flow parameters associated with hemolysis risk. The optimized impeller demonstrated a significant increase in low tangential stress zones (<10 Pa), reduced exposure time, and a lower hemolysis index. Comparative mathematical modeling and bench testing with donor blood confirmed the improved hemodynamic performance of the redesigned impeller over the original configuration.

About the Authors

A. P. Kuleshov
Shumakov National Medical Research Center of Transplantology and Artificial Organs
Russian Federation

Arkady P. Kuleshov.

1, Shchukinskaya str., Moscow, 123182

Phone: (915) 292-47-98



N. V. Grudinin
Shumakov National Medical Research Center of Transplantology and Artificial Organs
Russian Federation

Moscow



A. S. Buchnev
Shumakov National Medical Research Center of Transplantology and Artificial Organs
Russian Federation

Moscow



V. A. Elenkin
Shumakov National Medical Research Center of Transplantology and Artificial Organs
Russian Federation

Moscow



D. N. Shilkin
Shumakov National Medical Research Center of Transplantology and Artificial Organs
Russian Federation

Moscow



V. K. Bogdanov
Shumakov National Medical Research Center of Transplantology and Artificial Organs
Russian Federation

Moscow



References

1. Itkin GP, Bychnev AS, Kuleshov AP et al. Haemodynamic evaluation of the new pulsatile-flow generation method in vitro. The Inter-national Journal of Artificial Organs. 2020; 43 (6): 157–164.

2. Roberts N, Chandrasekaran U, Das S et al. Hemolysis associated with Impella heart pump positioning: In vitro hemolysis testing and computational fluid dynamics modeling. Int J Artif Organs. 2020. Mar 4: 391398820909843. doi: 10.1177/0391398820909843.

3. Kilic A, Nolan TD, Li T et al. Early in vivo experience with the pediatric Jarvik 2000 heart. ASAIO J. 2007; 53 (3): 374–378. doi: 10.1097/MAT.0b013e318038fc1f.

4. Schmid C, Tjan T, Etz C et al. The excor device – revival of an old system with excellent results. Thorac Cardiovasc Surg. 2006; 54 (6): 393–399. doi: 10.1055/s-2006-924268.

5. Liu GM, Jin DH, Jiang XH et al. Numerical and In Vitro Experimental Investigation of the Hemolytic Performance at the Off-Design Point of an Axial Ventricular Assist Pump. ASAIO J. 2016; 62 (6): 657–665. doi: 10.1097/MAT.0000000000000429.

6. Hastings SM, Ku DN, Wagoner S et al. Sources of circuit thrombosis in pediatric extracorporeal membrane oxygenation. ASAIO J. 2017; 63: 86–92.

7. Li P, Mei X, Ge W et al. A comprehensive comparison of the in vitro hemocompatibility of extracorporeal centrifugal blood pumps. Front Physiol. 2023. May 9; 14: 1136545. doi: 10.3389/fphys.2023.1136545.

8. Zhongjun WU. US20240198080A1/ Improved centrifugal blood pump. 2024.

9. Kuleshov AP, Itkin GP, Buchnev AS, Drobyshev AA. Mathematical evaluation of hemolysis in a channel centrifugal blood pump. Russian Journal of Transplantology and Artificial Organs. 2020; 22 (3): 79–85. https://doi.org/10.15825/1995-1191-2020-3-79-85.

10. Sarfare S, Ali MS, Palazzolo A, Rodefeld M, Conover T, Figliola R et al. Computational Fluid Dynamics Turbulence Model and Experimental Study for a Fontan Cavopulmonary Assist Device. J Biomech Eng. 2023 Nov 1; 145 (11): 111008. doi: 10.1115/1.4063088.

11. Lomakin AA. Tsentrobezhnye i osevye nasosy. 2-e izd. pererab. i dop. M.–L.: Mashinostroenie, 1966; 364.

12. Gross-Hardt S, Hesselmann F, Arens J et al. Low-flow assessment of current ECMO/ECCO2R rotary blood pumps and the potential effect on hemocompatibility. CritCare. 2019; 23: 348.

13. Fiusco F, Broman LM, Prahl Wittberg L. Blood Pumps for Extracorporeal Membrane Oxygenation: Platelet Activation During Different Operating Conditions. ASAIO J. 2022; 68 (1): 79–86. doi: 10.1097/MAT.0000000000001493.

14. Giersiepen M, Wurzinger LJ, Opitz R, Reul H. Estimation of shear-related blood damage in heart valve prostheses – in vitro comparison of 25 aortic valves. Int J Artif Organs. 1990; 13: 300–306.

15. Thamsen B, Blümel B, Schaller J et al. Numerical analysis of blood damage potential of the HeartMate II and HeartWare HVAD rotary blood pumps. Artificial Organs. 2015; 39 (8): 651–659.

16. Heuser G, Opitz R. A Couette viscometer for short time shearingof blood. Biorheology. 1980; 17: 17–24.

17. Leverett L et al. Red Blood Cell Damage by Shear Stress. Biophysical Journal. 1972; 3 (12): 257–273.

18. Fang P, Du J, Yu S. Effect of the Center Post Establishment and Its Design Variations on the Performance of a Centrifugal Rotary Blood Pump. Cardiovasc Eng Technol. 2020; 11 (4): 337–349. doi: 10.1007/s13239-020-00464-0.


Supplementary files

Review

For citations:


Kuleshov A.P., Grudinin N.V., Buchnev A.S., Elenkin V.A., Shilkin D.N., Bogdanov V.K. Assessment of blood hemolysis during optimization of the RotaFlow centrifugal pump impeller. Russian Journal of Transplantology and Artificial Organs. 2025;27(3):117-124. (In Russ.) https://doi.org/10.15825/1995-1191-2025-3-117-124

Views: 19


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1995-1191 (Print)