Preview

Russian Journal of Transplantology and Artificial Organs

Advanced search

Optimal temperature conditions for prolonged transport of donor hearts: an experimental study

https://doi.org/10.15825/1995-1191-2025-3-216-224

Abstract

Objective: to compare the effectiveness of extended heart preservation (up to 6 hours) at a temperature of +4 to +8 °C with the standard method. Materials and methods. The study was conducted using male Landrace pigs weighing 40–60 kg (n = 6). The experimental group (n = 3) underwent heart preservation at an optimized temperature of +4 to +8 °C for 6 hours prior to transplantation. In the control group (n = 3), hearts were preserved using the standard method for the same duration. Following preservation, coronary perfusion was restored ex vivo, cardiac activity was reinitiated, and myocardial function was evaluated alongside biochemical markers of cardiac tissue injury. Results. Following the resumption of blood supply and cardiac activity, both groups showed a reduction in superoxide dismutase (SOD) and malondialdehyde (MDA) levels. In the experimental group (preserved at +4–8 °C), SOD and MDA levels decreased from 12.31 to 8.85 ng/mL per 1 g of protein, while in the control group (standard method), levels declined from 12.04 to 9.23 ng/mL per 1 g of protein. In the experimental group, the level of heart-type fatty acid-binding protein (H-FABP) remained stable, whereas in the control group, it declined from 1.42 to 1.06 ng/mL per 1 g of protein. After prolonged preservation, receptor-interacting protein (RIP) kinase concentrations increased more markedly in the control group (from 0.071 to 0.086 ng/mL) than in the experimental group (from 0.024 to 0.028 ng/mL per 1 g of protein). Additionally, caspase-8 levels in the experimental group significantly decreased from 0.04 to 0.013 ng/mL per 1 g of protein. No significant differences were observed in von Willebrand factor levels between the two groups. However, histological analysis in the control group revealed muscle fiber fragmentation and widespread coagulopathy in myocardial tissue following standard cold («ice») preservation. Conclusion. This pilot experimental study indicates that long-term preservation of donor hearts at a controlled temperature of +4–8 °C is both effective and safe when compared to the conventional preservation method.

About the Authors

A. V. Fomichev
Meshalkin National Medical Research Center
Russian Federation

Novosibirsk



A. V. Protopopov
Meshalkin National Medical Research Center
Russian Federation

Andrey V. Protopopov.

15, Rechkunovskaya str., 630055, Novosibirsk

Phone: (914) 708-39-79



M. O. Zhulkov
Meshalkin National Medical Research Center
Russian Federation

Novosibirsk



A. G. Makaev
Meshalkin National Medical Research Center
Russian Federation

Novosibirsk



I. S. Zykov
Meshalkin National Medical Research Center
Russian Federation

Novosibirsk



A. R. Tarkova
Meshalkin National Medical Research Center
Russian Federation

Novosibirsk



K. N. Kaldar
Meshalkin National Medical Research Center
Russian Federation

Novosibirsk



M. N. Murtazaliev
Meshalkin National Medical Research Center
Russian Federation

Novosibirsk



Ya. M. Smirnov
Meshalkin National Medical Research Center
Russian Federation

Novosibirsk



A. D. Limanskiy
Meshalkin National Medical Research Center
Russian Federation

Novosibirsk



A. V. Guseva
Meshalkin National Medical Research Center
Russian Federation

Novosibirsk



D. A. Sirota
Meshalkin National Medical Research Center; Novosibirsk State Medical University
Russian Federation

Novosibirsk



References

1. Gautier SV, Khomyakov SM. Organ donation and transplantation in the Russian Federation in 2023. 16th Report from the Registry of the Russian Transplant Society. Russian Journal of Transplantology and Artificial Organs. 2024; 26 (3): 8–31. [In Russ, English abstract]. https://doi.org/10.15825/1995-1191-2024-3-8-31.

2. Radakovic D, Karimli S, Penov K et al. First clinical experience with the novel cold storage SherpaPakTM system for donor heart transportation. J Thorac Dis. 2020; 12 (12): 7227–7235. https://doi.org/10.21037/jtd-20-1827.

3. Fomichev AV, Poptsov VN, Sirota DA, Zhulkov MO, Edemskiy AG, Protopopov АV et al. Mid-term and long-term outcomes following heart transplantation with prolonged cold ischemia. Russian Journal of Transplantology and Artificial Organs. 2023; 25 (1): 99–105. [In Russ, English abstract]. https://doi.org/10.15825/1995-1191-2023-1-99-105.

4. Minasian SM, Galagudza MM, Dmitriev YV, Karpov AA, Vlasov TD. Preservation of the donor heart: from basic science to clinical studies. Interact Cardiovasc Thorac Surg. 2015; 20 (4): 510–519. https://doi.org/10.1093/ICVTS/IVU432.

5. Lee JC, Christie JD. Primary graft dysfunction. Proc Am Thorac Soc. 2009; 6 (1): 39–46. https://doi.org/10.1513/PATS.200808-082GO.

6. Bixby CE, Balsam LB. Better Than Ice: Advancing the Technology of Donor Heart Storage with the Paragonix SherpaPak. ASAIO J. 2023; 69 (4): 350–351. https://doi.org/10.1097/MAT.0000000000001925.

7. Severino P, D’amato A, Pucci M et al. Ischemic Heart Disease Pathophysiology Paradigms Overview: From Plaque Activation to Microvascular Dysfunction. Int J Mol Sci. 2020; 21 (21): 1–30. https://doi.org/10.3390/IJMS21218118.

8. Alomari M, Garg P, Yazji JH et al. Is the Organ Care System (OCS) Still the First Choice With Emerging New Strategies for Donation After Circulatory Death (DCD) in Heart Transplant? Cureus. 2022; 14 (6). https://doi.org/10.7759/CUREUS.26281.

9. Tarkova AR, Zykov IS, Zhulkov MO, Protopopov AV, Smirnov YaM, Makaev AG et al. Normothermic ex vivo heart and lung autoperfusion: assessment of functional status and metabolism. Russian Journal of Transplantology and Artificial Organs. 2023; 25 (4): 150–159. [In Russ, English abstract]. https://doi.org/10.15825/1995-1191-2023-4-150-159.

10. Zhul’kov M, Tarkova A, Zykov I, Makaev A, Protopopov A, Murtazaliev M et al. Dlitel’naja normotermicheskaja autoperfuzija serdechno-legochnogo kompleksa ex vivo kak metod jeffektivnogo kondicionirovanija transplantata: jeksperimental’noe issledovanie. Patologija krovoobrashhenija i kardiohirurgija. 2023; 27 (4): 33–42. https://doi.org/10.21688/1681-3472-2023-4-33-42.

11. Zhukov A, Karlsson R. Statistical aspects of van’t Hoff analysis: a simulation study. J Mol Recognit. 2007; 20 (5): 379–385. https://doi.org/10.1002/JMR.845.

12. Belzer FO, Southard JH. Principles of solid-organ preservation by cold storage. Transplantation. 1988; 45 (4): 673–676. https://doi.org/10.1097/00007890-198804000-00001.

13. Smirnov YM, Zhulkov MO, Zykov IS, Sirota DA, Tarkova AR, Kliver EE et al. Dynamics of the morphofunctional status of the isolated cardiopulmonary complex under conditions of normothermic autoperfusion ex vivo. Clinical and Experimental Surgery. 2024; 12 (3): 14–22. [In Russ, English abstract]. https://doi.org/10.33029/2308-1198-2024-12-3-14-22.

14. Keon WJ, Hendry PJ, Taichman GC, Mainwood GW. Cardiac transplantation: the ideal myocardial temperature for graft transport. Ann Thorac Surg. 1988; 46 (3): 337–341. https://doi.org/10.1016/S0003-4975(10)65939-5.

15. Michel SG, II GML, Madariaga MLL, Anderson LM. Innovative cold storage of donor organs using the Paragonix Sherpa Pak TM devices. Heart Lung Vessel. 2015; 7 (3): 246.

16. Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007; 39 (1): 44–84. https://doi.org/10.1016/J.BIOCEL.2006.07.001.

17. Colak E, Pap D, Nikolić L, Vicković S. The impact of obesity to antioxidant defense parameters in adolescents with increased cardiovascular risk. J Med Biochem. 2020; 39 (3): 346. https://doi.org/10.2478/JOMB-2019-0051.

18. Amaki T, Suzuki T, Nakamura F et al. Circulating malondialdehyde modified LDL is a biochemical risk marker for coronary artery disease. Heart. 2004; 90 (10): 1211–1213. https://doi.org/10.1136/HRT.2003.018226.

19. Dhalla NS, Elmoselhi AB, Hata T, Makino N. Status of myocardial antioxidants in ischemia-reperfusion injury. Cardiovasc Res. 2000; 47 (3): 446–456. https://doi.org/10.1016/S0008-6363(00)00078-X.

20. Ye XD, He Y, Wang S, Wong GT, Irwin MG, Xia Z. Heart-type fatty acid binding protein (H-FABP) as a biomarker for acute myocardial injury and long-term post-ischemic prognosis. Acta Pharmacol Sin. 2018; 39 (7): 1155. https://doi.org/10.1038/APS.2018.37.

21. Deroo E, Zhou T, Liu B. The Role of RIPK1 and RIPK3 in Cardiovascular Disease. Int J Mol Sci. 2020; 21 (21): 8174. https://doi.org/10.3390/IJMS21218174.

22. Dhuriya YK, Sharma D. Necroptosis: a regulated inflammatory mode of cell death. Journal of Neuroinflammation. 2018; 15 (1): 1–9. https://doi.org/10.1186/S12974-018-1235-0.

23. Wang X, Zhao J, Zhang Y et al. Kinetics of plasma von Willebrand factor in acute myocardial infarction patients: a meta-analysis. Oncotarget. 2017; 8 (52): 90371–90379. https://doi.org/10.18632/ONCOTARGET.20091.


Review

For citations:


Fomichev A.V., Protopopov A.V., Zhulkov M.O., Makaev A.G., Zykov I.S., Tarkova A.R., Kaldar K.N., Murtazaliev M.N., Smirnov Ya.M., Limanskiy A.D., Guseva A.V., Sirota D.A. Optimal temperature conditions for prolonged transport of donor hearts: an experimental study. Russian Journal of Transplantology and Artificial Organs. 2025;27(3):216-224. (In Russ.) https://doi.org/10.15825/1995-1191-2025-3-216-224

Views: 23


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1995-1191 (Print)