Preview

Russian Journal of Transplantology and Artificial Organs

Advanced search

Surgical technique for explantation of a functioning cardiopulmonary complex in an experiment

https://doi.org/10.15825/1995-1191-2023-3-122-128

Abstract

Objective: to develop and approve the surgical technique for explantation of a functioning cardiopulmonary complex under normothermic autoperfusion.

Materials and methods. Landrace pigs were used as the experimental model for a series of acute experiments (n = 10). During the experiment, invasive pressure in the cavities of the heart and main arteries, blood gas composition, and myocardial contractility were monitored. The functioning cardiopulmonary complex was explanted through a median sternotomy. The explanted complex was conditioned at 37–38 °C for 6 hours.

Results. In the course of a series of experiments, it was shown that stable operation of the isolated heart-lung complex ex vivo for 6 hours was fundamentally possible provided that the parameters of the basic homeostasis constants are maintained. The technological solutions used made it possible to ensure safe hemodynamic and anatomical isolation of the working cardiopulmonary complex.

Conclusion. The developed protocol for isolating a functioning cardiopulmonary complex allows to provide stable graft function for 6 hours under normothermic autoperfusion. Implementation of this concept in the development of transport systems would significantly facilitate their design and eliminate the use of expensive components. This would contribute to widespread introduction into clinical practice.

About the Authors

M. O. Zhulkov
Meshalkin National Medical Research Center
Russian Federation

Novosibirsk



I. S. Zykov
Meshalkin National Medical Research Center
Russian Federation

Novosibirsk



A. G. Makaev
Meshalkin National Medical Research Center
Russian Federation

Alexander Makaev,

15, Rechkunovskaya str., Novosibirsk, 630055



A. V. Protopopov
Meshalkin National Medical Research Center
Russian Federation

Novosibirsk



M. N. Murtazaliev
Meshalkin National Medical Research Center
Russian Federation

Novosibirsk



F. Yu. Kosimov
Novosibirsk State Medical University
Russian Federation

Novosibirsk



A. R. Tarkova
Meshalkin National Medical Research Center
Russian Federation

Novosibirsk



A. D. Limansky
Zelman Institute of Medicine and Psychology, Novosibirsk State University
Russian Federation

Novosibirsk



Ya. M. Smirnov
Zelman Institute of Medicine and Psychology, Novosibirsk State University
Russian Federation

Novosibirsk



H. A. Agaeva
Meshalkin National Medical Research Center
Russian Federation

Novosibirsk



O. E. Frykina
Meshalkin National Medical Research Center
Russian Federation

Novosibirsk



D. A. Sirota
Meshalkin National Medical Research Center
Russian Federation

Novosibirsk



References

1. Fomichev AV, Poptsov VN, Sirota DA, Zhulkov MO, Edemskiy AG, Protopopov АV et al. Mid-term and longterm outcomes following heart transplantation with prolonged cold ischemia. Russian Journal of Transplantology and Artificial Organs. 2023; 25 (1): 99–105. (In Russ.). https://doi.org/10.15825/1995-1191-2023-1-99-105.

2. Pannekoek A, Ali U. Does the solution used for cold static storage of hearts impact on heart transplant survival? Interact Cardiovasc Thorac Surg. 2021; 33 (5): 814–818. doi: 10.1093/icvts/ivab164.

3. Fomichev AV, Khvan DS, Agaeva HA, Zhulkov MO, Doronin DV, Chernyavsky AM. Experience of heart transplantation with an extended cold ischemic time of donor heart. Russian Journal of Cardiology. 2020; 25 (8): 4011. https://doi.org/10.15829/1560-4071-2020-4011.

4. Qin G, Jernryd V, Sjöberg T, Steen S, Nilsson J. Machine Perfusion for Human Heart Preservation: A Systematic Review. Transpl Int. 2022; 35: 10258. doi: 10.3389/ti.2022.10258.

5. Peters-Sengers H, Houtzager JHE, Idu MM, Heemskerk MBA, van Heurn ELW, Homan van der Heide JJ et al. Impact of Cold Ischemia Time on Outcomes of Deceased Donor Kidney Transplantation: An Analysis of a National Registry. Transplant Direct. 2019; 5 (5): e448. doi: 10.1097/TXD.0000000000000888.

6. Ontario Health (Quality). Portable Normothermic Cardiac Perfusion System in Donation After Cardiocirculatory Death: A Health Technology Assessment. Ont Health Technol Assess Ser. 2020; 20 (3): 1–90.

7. Van Raemdonck D, Rega F, Rex S, Neyrinck A. Machine perfusion of thoracic organs. J Thorac Dis. 2018; 10 (Suppl 8): S910–S923. doi: 10.21037/jtd.2018.02.85.

8. Zhulkov MO, Sirota DA, Zykov IS, Sabetov AK, Agaeva KA, Makaev АG et al. Results of a study of the effectiveness of direct coronary oxygen persufflation as a donor heart conditioning method. Russian Journal of Transplantology and Artificial Organs. 2022; 24 (3): 111–120. https://doi.org/10.15825/1995-1191-2022-3-111-120.

9. Pinnelas R, Kobashigawa JA. Ex vivo normothermic perfusion in heart transplantation: a review of the TransMedics® Organ Care System. Future Cardiol. 2022; 18 (1): 5–15. doi: 10.2217/fca-2021-0030.

10. Slama A, Schillab L, Barta M, Benedek A, Mitterbauer A, Hoetzenecker K et al. Standard donor lung procurement with normothermic ex vivo lung perfusion: A prospective randomized clinical trial. J Heart Lung Transplant. 2017; 36 (7): 744–753. doi: 10.1016/j.healun.2017.02.011.

11. Jochmans I, O’Callaghan JM, Pirenne J, Ploeg RJ. Hypothermic machine perfusion of kidneys retrieved from standard and high-risk donors. Transpl Int. 2015; 28 (6): 665–676. doi: 10.1111/tri.12530.

12. Pettit SJ, Petrie MC. Transplantation of Hearts Donated After Circulatory-Determined Death. Circ Heart Fail. 2019; 12 (4): e005991. doi: 10.1161/CIRCHEARTFAILURE.119.005991.

13. Zhulkov MO, Fomichev AV, Alsov SA, Cleaver EN, Chernyavsky AM. Current state of the problem and results of ex vivo perfusion of donor hearts. Russian Journal of Transplantology and Artificial Organs. 2019; 21 (4): 143–146. https://doi.org/10.15825/1995-1191-2019-4- 143-146.

14. Starling EH, Visscher MB. The regulation of the energy output of the heart. J Physiol. 1927; 62 (3): 243–261. doi: 10.1113/jphysiol.1927.sp002355.

15. Zimmer HG. Modifications of the isolated frog heart preparation in Carl Ludwig’s Leipzig Physiological Institute: relevance for cardiovascular research. Can J Cardiol. 2000; 16 (1): 61–69.

16. Zimmer HG. Who discovered the Frank-Starling mechanism? News Physiol Sci. 2002; 17: 181–184. doi: 10.1152/nips.01383.2002.

17. Fye WB. H. Newell Martin and the isolated heart preparation: the link between the frog and open heart surgery. Circulation. 1986; 73 (5): 857–864. doi: 10.1161/01.cir.73.5.857.

18. Elzinga G. Cross Talk Between Left and Right Heart: A Study on the Isolated Heart. Vrije Univ. te Amsterdam. 1972.

19. Patterson SW, Starling EH. The carbohydrate metabolism of the isolated heart lung preparation. J Physiol. 1913; 47 (1–2): 137–148. doi: 10.1113/jphysiol.1913.sp001617.

20. Patterson SW, Starling EH. On the mechanical factors which determine the output of the ventricles. J Physiol. 1914; 48 (5): 357–379. doi: 10.1113/jphysiol.1914. sp001669.

21. Langendorff O. Untersuchungen am überlebenden Säugethierherzen. Arch für die gesamte Physiol des Menschen und der Tiere. 1895; 61: 291–332.

22. Neely JR, Liebermeister H, Battersby EJ, Morgan HE. Effect of pressure development on oxygen consumption by isolated rat heart. Am J Physiol. 1967; 212 (4): 804–814. doi: 10.1152/ajplegacy.1967.212.4.804.

23. Simaan J, Fawaz G. The mechanical efficiency of the Starling heart-lung preparation. Pflugers Arch. 1968; 302 (2): 123–132. doi: 10.1007/BF00586865.

24. Huisman PH, Schipperheyn JJ. The isolated heart-lung preparation. The Hague: Martinus Nijhoff Medical Division, 1978. 36–36.

25. Langer RM. Vladimir P. Demikhov, a pioneer of organ transplantation. Transplant Proc. 2011; 43 (4): 1221– 1222. doi: 10.1016/j.transproceed.2011.03.070.

26. Kozlov IA, Krichevskiy LA. Heart Transplantation in the USSR and Former Soviet Countries. J Cardiothorac Vasc Anesth. 2020; 34 (12): 3398–3408. doi: 10.1053/j.jvca.2019.12.001.

27. Zhulkov MO, Zykov IS, Sirota DA, Agaeva HA, Sabetov AK, Poveschenko OV et al. Long-Term Conditioning of a Donor Heart by Autoperfusion. Journal of experimental and clinical surgery. 2022; 15: 3: 214–220. doi: 10.18499/2070-478X-2022-15-3-214-220.


Supplementary files

Review

For citations:


Zhulkov M.O., Zykov I.S., Makaev A.G., Protopopov A.V., Murtazaliev M.N., Kosimov F.Yu., Tarkova A.R., Limansky A.D., Smirnov Ya.M., Agaeva H.A., Frykina O.E., Sirota D.A. Surgical technique for explantation of a functioning cardiopulmonary complex in an experiment. Russian Journal of Transplantology and Artificial Organs. 2023;25(3):122-128. https://doi.org/10.15825/1995-1191-2023-3-122-128

Views: 573


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1995-1191 (Print)