In vivo assessment of the biocompatible properties of resorbable porous materials for pleural implantation
https://doi.org/10.15825/1995-1191-2021-1-49-59
Abstract
Correcting the pleural cavity space or filling large residual cavities (up to 500-700 cm3), arising as a result of extensive combined resections of the lung or extrapleural pneumolysis in tuberculosis and other lung diseases, still remains a challenging issue. The surgical methods used to correct the pleural cavity space are traumatic in nature. Moreover, various biological and synthetic materials used are not effective enough. Objective: to conduct an in vivo study of the biocompatible properties of laboratory samples of porous materials based on polylactide (PLA) and polycaprolactone (PCL) as potential materials for pleural implants development, as part of the general problem of developing a resorbable porous implant for intra- and extrapleural implantation and in situ formation of a «biological filling» to correct the volume of the pleural cavity. Materials and methods. In vivo subcutaneous implantation was performed in Wistar rats. The experiment involved the following samples: No. 1 - 3.0%; No. 2 - 4.0%; No. 3 - 1.7%. The ratio of the polymers in the solution was, respectively: 3/1, 1/3 and 1/1 PLA/PCL. Highly porous implants were obtained by lyophilization. The porosity of the samples ranged from 96.0% to 98.3%. The Young's modulus was from 100 to 1800 kPa. In the control group, a Mentor silicone implant shell was used. The explantation time was 1, 2, 3, 4, 5, 8, 12, 14 weeks. Histological, histochemical and immunohistochemical studies of explants and surrounding local tissues were conducted. Results. Reaction of local tissues to the implantation of three types of samples of different composition from PLA/PCL, accompanied by material resorption processes, replacement by fibrous tissue, vascularization and encapsulation, without perifocal inflammation and reactive changes, indicates the biocompatibility of the materials studied. In control samples with silicone implant, a long-lasting perifocal reaction from eosinophilic leukocytes was revealed, which prevents us from excluding the possibility of an allergic reaction to the implant material in the surrounding tissues. Conclusion. In vivo experiments on the small animals show the biosafety and high biocompatibility of laboratory samples of bioresorbable highly porous matrices based on polylactide and polycaprolatcon as potential materials for development of pleural implants. Further studies with scaling of laboratory samples and a detailed study of the dynamics of biodegradation of porous matrices in vivo in large animals are required. The need for further improvement in laboratory samples of bioresorbable pleural implants is associated with giving the porous matrices antibacterial, bioactive and X-ray contrast properties.
About the Authors
I. A. VasilevaRussian Federation
4/2, Dostoevskogo str., Moscow, 127473.
V. I. Sevastianov
Russian Federation
Moscow.
K. V. Tokaev
Russian Federation
Kazbek Tokaev.
4/2, Dostoevskogo str., Moscow, 127473.
Phone: (916) 347-63-24
Yu. R. Zyuza
Russian Federation
4/2, Dostoevskogo str., Moscow, 127473.
T. E. Grigoriev
Russian Federation
Moscow.
T. K. Tokaev
Russian Federation
4/2, Dostoevskogo str., Moscow, 127473.
A. S. Bikbaev
Russian Federation
4/2, Dostoevskogo str., Moscow, 127473.
V. K. Tokaev
Russian Federation
Moscow.
Yu. D. Zagoskin
Russian Federation
Moscow.
K. I. Lukanina
Russian Federation
Moscow.
S. N. Chvalun
Russian Federation
Moscow.
References
1. Bogush LK. Khirurgicheskoe lechenie tuberkuleza legkikh. M.: Meditsina (1979), 296.
2. Yampol'skaya VD. Ekstraplevral'nyy pnevmotoraks i oleotoraks pri tuberkuleze legkikh. M.: Medgiz (1963), 240.
3. Nikolaev IS, Zhadnov VZ, Terent'eva VM. Khirurgicheskoe lechenie bol'nykh s rasprostranennym destruktivnym tuberkulezom legkikh. Problemy tuberkuleza. 1987; 6: 45-47.
4. Stoyko NG. Khirurgicheskoe lechenie legochnogo tuberkuleza. M.: Medgiz (1949), 271.
5. Malov AA. Ekstraplevral'nyy pnevmoliz s plombirovkoy v lechenii rasprostranennogo destruktivnogo tuberkuleza legkikh. [Dissertation]. M., 2011, 151.
6. Kekin ES. Ekstraplevral'naya plombirovka gemitoraksa sukhim fibrinogenom posle rezektsii legkogo u bol'nykh tuberkulezom. Problemy tuberkuleza. 1983; 1: 52-55.
7. Zykov GA, Svincov AE, Mohirev AI, Hramcov VE, Knyazev OF. Sposob korrekcii plevral'noj polosti pri chastichnoj rezekcii legkogo. Patent RU 2533969 C1.
8. Chudnykh SM, Ivanov AV, Malov AA. Videoassistirovannyy ekstraplevral'nyy pnevmoliz v lechenii bol'nykh destruktivnymi formami tuberkuleza. Moskovskiy khirurgicheskiy zhurnal. 2009; 1 (5): 19-25.
9. Ivanov AV, Peterson SB, Chudnyh SM, Kobelevskaya NV, Malov AA, Emel'yanov SI. Sposob hirurgicheskogo lecheniya destruktivnyh form tuberkuleza legkih. Patent RUS 2280413 (2004).
10. Giller DB, Ivanov AV, Giller BM, Giller GV, Tokaev KV, Bagirov MA i dr. Sposob operacii ekstraplevral'nogo pnevmoliza pri tuberkuleze legkih. Patent RUS 2290878 (2006).
11. Agkacev TV, Sinicyn MV. Sposob operacii ekstraplevral'nogo pnevmoliza. Patent RU 2448658 C1 (2010).
12. Bertin F, Labrousse L, Gazaille V, Vincent F, Guerlin A, Laskar M. New modality of collapse therapy for pulmonary tuberculosis sequels: tissue expander. Ann. Thorac. Surg. 2007; 84 (3): 1023-1025. doi: https://doi.org/10.1016/j.athoracsur.2007.04.013.
13. Sinitsin MV, Agkatsev TV, Reshetnikov MN, Pozdnyakova EI, Itskov AV, Gazdanov TA i dr. Ekstraplevral'nyy pnevmoliz s plombirovkoy v lechenii bol'nykh destruktivnym tuberkulezom legkikh. Khirurg. 2018; 1-2: 54-63.
14. Krasnikova EV, Bagirov MA, Lovacheva OV, Popova LA, Sadovnikova SS, Karpina NL. Effektivnost' ekstraplevral'noy plombirovki silikonovym implantom u bol'nykh destruktivnym tuberkulezom legkikh i ee vliyanie na funktsional'noe sostoyanie legkikh i gazovyy sostav krovi. Tuberkulez i bolezni legkikh. 2019; 97 (3): 16-25. doi: https://doi.org/10.21292/2075-1230-2019-97-3-16-25.
15. Sevastianov VI, Grigoriev AM, Basok YB, Kirsanova LA, Vasilets VN, Malkova AP et al. Biocompatible and matrix properties of polylactide scaffolds. Vestnik transplantologii i iskusstvennyh organov. 2018; 20 (2): 82-90. doi: https://doi.org/10.15825/1995-1191-2018-2-82-90.
16. Grigoriev TE, Bukharova TB, Vasilyev AV, Leonov GE, Zagoskin YD, Kuznetsova VS et al. Effect of molecular characteristics and morphology on mechanical performance and biocompatibility of pla-based spongious scaffolds. BioNanoScience. 2018; 8 (4): 977-983. doi: https://doi.org/10.1007/s12668-018-0557-9.
17. Kim HY, Kim HN, Lee SJ, Song JE, Kwon SY, Chung JW et al. Effect of pore sizes of PLGA scaffolds on mechanical properties and cell behaviour for nucleus pulposus regeneration in vivo. J. Tissue Eng. Regen. Med. 2017; 11: 44-57. doi: https://doi.org/10.1002/term.1856.
Review
For citations:
Vasileva I.A., Sevastianov V.I., Tokaev K.V., Zyuza Yu.R., Grigoriev T.E., Tokaev T.K., Bikbaev A.S., Tokaev V.K., Zagoskin Yu.D., Lukanina K.I., Chvalun S.N. In vivo assessment of the biocompatible properties of resorbable porous materials for pleural implantation. Russian Journal of Transplantology and Artificial Organs. 2021;23(1):49-59. https://doi.org/10.15825/1995-1191-2021-1-49-59