Characteristics of mechanisms of the distant stimulating effect of skin flap autograft on microvascular perfusion in local and systemic microcirculation disorders
https://doi.org/10.15825/1995-1191-2020-4-123-132
Abstract
Objective: to study the characteristics of mechanisms of the distant stimulating effect of full-thickness skin
autograft (FTSG) on microvascular perfusion in local and systemic microcirculation disorders.
Materials and methods. The experiment was carried out on 87 white male rats, divided into 5 groups: 1) control; 2) animals with local microcirculation disorders induced by sciatic nerve transection and neuroraphy; 3) animals with systemic microcirculation disorders caused by alloxan-induced diabetes; 4) animals that underwent FTSG after sciatic nerve transection and neurography; 5) animals that underwent FTSG in alloxan-induced diabetes. Laser Doppler flowmetry (LDF) was used to study microcirculation of the dorsal skin of the rear paw. Serum concentrations of vasoactive substances, including catecholamines (CA), histamine, and vasculoendothelial growth factor (VEGF) in the experimental animals were measured. A morphological study of the tissues of the autograft site was carried out on day 42 of the experiment.
Results. On day 42 of the experiment, FTSG normalized perfusion in local and systemic microcirculation disorders. FTSG decreases CA level in nerve injury, and to a greater extent in alloxaninduced diabetes. Serum histamine increase under FTSG was more pronounced in rats with nerve injury. Serum VEGF in rats with nerve injury and FTSG increased, which was not observed in alloxan-induced diabetes. Histological assay of the autograft site revealed degenerative changes in the epidermis and dermis of the autotransplant in both experimental models of microcirculatory disorders. Eosinophilic infiltration of the autograft site was more pronounced in nerve injury than in alloxan-induced diabetes.
Conclusion. FTSG has a distant stimulating effect on microcirculation, which manifests itself in the same degree in both local and systemic microcirculation disorders. The distant stimulating effect of FTSG on microcirculation is multicomponent in nature and includes a set of regulatory reactions, whose severity differs in local and systemic microcirculatory disorders.
About the Authors
A. N. IvanovRussian Federation
137/5, Bolshaya Sadovaya str., Saratov, 410054, Russian Federation
Phone: (927) 279-95-99
D. D. Lagutina
Russian Federation
137/5, Bolshaya Sadovaya str., Saratov, 410054, Russian Federation
T. V. Stepanova
Russian Federation
137/5, Bolshaya Sadovaya str., Saratov, 410054, Russian Federation
References
1. Mironov SP, Krupatkin AI, Golubev VG, Panov DE. Diagnostika i vybor taktiki lecheniya pri povrezhdeniyah perifericheskih nervov. Vestnik travmatologii i ortopedii im. N.N. Priorova. 2005; 2: 33–39.
2. Shchanicyn IN, Ivanov AN, Bazhanov SP, Ninel’ VG, Puchin’yan DM, Norkin IA. Stimulyaciya regeneracii perifericheskogo nerva: sovremennoe sostoyanie, problem i perspektivy. Uspekhi fiziologicheskih nauk. 2017; 48 (3): 92–112.
3. Inanc M, Tekin K, Kiziltoprak H, Ozalkak S, Doguizi S, Aycan Z. Changes in Retinal Microcirculation Precede the Clinical Onset of Diabetic Retinopathy in Children With Type 1 Diabetes Mellitus. J Ophthalmol. 2019; 207: 37–44. doi: 10.1016/j.ajo.2019.04.011.
4. Stacenko ME, Turkina SV, Shilina NN, Kosivcova MA, LopushkovaYuE, Vinnikova AA i dr. Osobennosti sostoyaniya mikrocirkulyacii u bol’nyh hronicheskoj serdechnoj nedostatochnost’yu i saharnym diabetom vtorogo tipa. Volgogradskij nauchno-medicinskij zhurnal. 2015; 1 (45): 35–39.
5. Kuo L, Hein TW. Vasomotor regulation of coronary microcirculation by oxidative stress: role of arginase. Front Immunol. 2013; 19 (4): 237.
6. Mihajlusov RN. Faktory rosta – perspektivnye tekhnologii vozdejstviya na ranevoj process. Harkіvs’ka hіrurgіchna shkola. 2014; 5 (68): 90–98.
7. Gromova OA, Torshin IYu, Volkov AYu. Elementnyj sostav preparata Laennek i ego klyuchevaya rol’ v farmakologicheskom vozdejstvii preparata. Plasticheskaya hirurgiya i kosmetologiya. 2010; 4: 1–7.
8. Öhnstedt E, Lofton Tomenius H, Vågesjö E, Phillipson M. The discovery and development of topical medicines for wound healing. Expert Opinionon Drug Discovery. 2019; 14: 485–497. doi: 10.1080/17460441.2019.1588879/.
9. Nozdrin VI, Belousova TA, Al’banova VI, Lavrik OI. Gistofarmakologicheskie issledovaniya kozhi (nash opyt). M., 2006. 376.
10. Hocking SL, Stewart RL, Brandon AE. Subcutaneous fat transplantation alleviates diet-induced glucose intolerance and inflammation in mice. Diabetologia. 2015; 58 (7): 1587–600.
11. Foster MT, Shi H, Softic S et al. Transplantation of nonvisceral fat to the visceral cavity improves glucose tolerance in mice: investigation of hepatic lipids and insulin sensitivity. Diabetologia. 2011; 54 (11): 2890–2899.
12. Hramcova YuS, Artashyan OS, Yushkov BG, Volkova YuL, Nezgovorova NYu. Vliyanie tuchnyh kletok na reparativnuyu regeneraciyu tkanej s raznoj stepen’yu immunologicheskoj privilegirovannosti. Citologiya. 2016; 58 (5): 356–363.
13. Ivanov AN, Lagutina DD, Gladkova EV, Matveeva OV, Mamonova IA, Shutrov IE i dr. Mekhanizmy distantnogo stimuliruyushchego dejstviya autotransplantacii kozhnogo loskuta pri povrezhdenii perifericheskogo nerva. Rossijskij fiziologicheskij zhurnal im. I.M. Sechenova. 2018; 11: 1313–1324.
14. Ivanov AN, Popyhova EB, Stepanova TV, Pronina EA, Lagutina DD. Izmenenie pokazatelej mikrocirkulyacii pri autotransplantacii polnoslojnogo kozhnogo loskuta na fone eksperimental’nogo saharnogo diabeta u krys. Regionarnoe krovoobrashchenie i mikrocirkulyaciya. 2019; 4: 72–80.
15. Ivanov AN, Norkin IA, Ninel’ VG, Shchanicyn IN, Shutrov IE, Puchin’yan DM. Osobennosti izmenenij mikrocirkulyacii pri regeneracii sedalishchnogo nerva v usloviyah eksperimenta. Fundamental’nye issledovaniya. 2014; 4 (2): 281–285.
16. Dzhafarova RE. Sravnitel’noe issledovanie razlichnyh modelej alloksan-inducirovannogo saharnogo diabeta. Kazanskij medicinskij zhurnal. 2013; 94 (6): 915–919.
17. Ivanov AN, Shutrov IE, Norkin IA. Autotransplantaciya polnoslojnogo kozhnogo loskuta kak sposob biostimulyacii mikrocirkulyacii v usloviyah normal’noj i narushennoj innervacii. Regionarnoe krovoobrashchenie i mikrocirkulyaciya. 2015; 3 (55): 59–65.
18. Feng W, Shi R, Zhang C, Liu S, Yu T, Zhu D. Visualization of skin microvascular dysfunction of type 1 diabetic mice using in vivo skin optical clearing method. J Biomed Opt. 2018; 24 (3): 1–9.
19. Marco GS, Colucci JA, Fernandes FB, Vio CP, Schor N, Casarini DE. Diabetes induces changes of catecholamines in primary mesangial cells. Int J Biochem Cell Biol. 2008; 40 (4): 747–754.
20. Anohova LI, Pateyuk AV, Kuznik BI, Kohan ST. Sravnitel’noe vliyanie polipeptidov endometriya i timalina na nekotorye pokazateli immuniteta i gemostaza v opytah in vitro i in vivo. Byulleten’ VSNC SO RAMN. 2011; 6: 156–159.
21. Gorbacheva AM, Berdalin AB, Stulova AN, Nikogosova AD, Lin MD, Buravkov SV i dr. Izmenenie simpaticheskoj innervacii hvostovoj arterii krysy pri eksperimental’nom infarkte miokarda; vliyanie peptida «SEMAKS». Byulleten’ eksperimental’noj biologii i mediciny. 2016; 4: 462–467.
22. Ivanov AN, Shutrov IE, Ninel’ VG, Korshunova GA, Gladkova EV, Matveeva OV i dr. Vliyanie autotransplantacii kozhnogo loskuta i pryamoj elektrostimulyacii sedalishchnogo nerva na regeneraciyu nervnyh volokon. Citologiya. 2017; 7: 489–497.
23. Chakroborty D, Sarkar Ch, Lu K, Bhat M. Activation of dopamine d1 receptors in dermal fibroblasts restores vascular endothelial growth factor-a production by these cells and subsequent angiogenesis in diabetic cutaneous wound tissues. Am J Pathol. 2016; 186 (9): 2262–2270. doi: 10.1016/j.ajpath.2016.05.008.
24. Panagopoulos V, Zinonos I, Leach D, Evdokiou A. Human peripheral blood eosinophils induce angiogenesis. The International Journal of Biochemistry & Cell Biology. 2005; 37 (3): 628–636. doi: 10.1016/j.biocel.2004.09.001.
25. Lee AJ, Ro MJ, Park JI, Jang JH, Kim JH. The synthesis of VEGF in allergen-stimulated mast cells is through a leukotriene B4 receptor-2-dependent signaling pathway. J Immunol. 2016; 1: 196.
26. Monastyrskaya EA, Lyamina SV, Malyshev IYu. M1 i M2 fenotipy aktivirovannyh makrofagov i ih rol’ v immunnom otvete i patologii. Patogenez. 2008; 4: 31–39.
27. Iskakova SS, Zharmahanova GM, Dvoracka M. Mesto angiogeneza v razvitii saharnogo diabeta i ego oslozhnenij (obzor literatury). Vestnik KazNMU. 2014; 2 (2): 303–307.
28. Swartzendruber JA, Byrne AJ, Bryce PJ. Cutting edge: histamine is required for IL-4-driven eosinophilic allergic responses. J Immunol. 2012; 188 (2): 536–540.
29. De F Carvalho V, Campos LV, Farias-Filho FA, Florim LT, Barreto EO, Pirmez C et al. Suppression of allergic inflammatory response in the skin of alloxan-diabetic rats: relationship with reduced local mast cell numbers. Int Arch Allergy Immunol. 2008; 147 (3): 246–254.
Review
For citations:
Ivanov A.N., Lagutina D.D., Stepanova T.V. Characteristics of mechanisms of the distant stimulating effect of skin flap autograft on microvascular perfusion in local and systemic microcirculation disorders. Russian Journal of Transplantology and Artificial Organs. 2020;22(4):123-132. https://doi.org/10.15825/1995-1191-2020-4-123-132