Preview

Russian Journal of Transplantology and Artificial Organs

Advanced search

Biodegradable materials based on natural silk fabric as promising scaffolds for tissue engineering and regenerative medicine

https://doi.org/10.15825/1995-1191-2020-4-105-114

Abstract

Objective: to develop a method for obtaining scaffolds based on natural silk fabric and to study their biocompatibility in vitro.

Materials and methods. To obtain biodegradable scaffolds based on natural silk fabric, we propose treating natural silk fabric with a water-ethanol solution of calcium chloride. Differences in the structure of the resulting scaffolds were identified via scanning electron microscopy.

Conclusion. The resulting scaffolds are non-toxic to cells and support cell adhesion and proliferation. Our studies make it possible to consider the resulting biodegradable scaffolds as promising constructs for tissue engineering and regenerative medicine.

About the Authors

L. A. Safonova
Shumakov National Medical Research Center of Transplantology and Artificial Organs
Russian Federation
Moscow


M. M. Bobrova
Shumakov National Medical Research Center of Transplantology and Artificial Organs
Russian Federation
Moscow


A. E. Efimov
Shumakov National Medical Research Center of Transplantology and Artificial Organs
Russian Federation
Moscow


O. I. Agapova
Shumakov National Medical Research Center of Transplantology and Artificial Organs
Russian Federation
Moscow


I. I. Agapov
Shumakov National Medical Research Center of Transplantology and Artificial Organs
Russian Federation

1, Schukinskaya str., Moscow, 123182, Russian Federation

Phone: (985) 231-60-42



References

1. Koh L-D, Cheng Y, Teng C-P, Khin Y-W, Loh X-J, Tee S-Y et al. Structures, mechanical properties and applications of silk fibroin materials. Progress in Polymer Science. 2015; 46: 86–110. doi: 10.1016/j.progpolymsci.2015.02.001.

2. Ding Z, Han H, Fan Z, Lu H, Sang Y, Yao Y et al. Nanoscale Silk–Hydroxyapatite Hydrogels for Injectable Bone Biomaterials. ACS applied materials & interfaces. 2017; 9: 16913–16921. doi: 10.1021/acsami.7b03932. PMID: 28471165.

3. Kim DK, Sim BR, Khang G. Nature-derived aloe vera gel blended silk fibroin film scaffolds for cornea endothelial cell regeneration and transplantation. ACS applied materials & interfaces. 2016; 8: 15160–15168. doi: 10.1021/acsami.6b04901. PMID: 27243449.

4. Dinis T, Elia R, Vidal G, Dermigny Q, Denoeud C, Kaplan D et al. 3D multi-channel bi-functionalized silk electrospun conduits for peripheral nerve regeneration. Journal of the mechanical behavior of biomedical materials. 2015; 41: 43–55. doi: 10.1016/j.jmbbm.2014.09.029. PMID: 25460402.

5. Wang Y, Rudym DD, Walsh A, Abrahamsen L, Kim H-J, Kim HS et al. In vivo degradation of three-dimensional silk fibroin scaffolds. Biomaterials. 2008; 29: 3415–3428. doi: 10.1016/j.biomaterials.2008.05.002. PMID: 18502501.

6. Gupta P, Lorentz KL, Haskett DG, Cunnane EM, Ramaswamy AK, Weinbaum JS et al. Bioresorbable silk grafts for small diameter vascular tissue engineering applications: In vitro and in vivo functional analysis. Acta Biomater. 2020; 15 (105): 146–158. doi: 10.1016/j.actbio.2020.01.020. PMID: 31958596.

7. Hasturk O, Jordan KE, Choi J, Kaplan DL. Enzymatically crosslinked silk and silk-gelatin hydrogels with tunable gelation kinetics, mechanical properties and bioactivity for cell culture and encapsulation. Biomaterials. 2019; 232: 119720. doi: 10.1016/j.biomaterials.2019.119720. PMID: 31896515.

8. Wang Y, Fan S, Li Y, Niu C, Li X, Guo Y et al. Silk fibroin/sodium alginate composite porous materials with controllable degradation. Int J Biol Macromol. 2019; 1 (150): 1314–1322. doi: 10.1016/j.ijbiomac.2019.10.141. PMID: 31747567.

9. Ratanavaraporn J, Kanokpanont S, Damrongsakkul S. The development of injectable gelatin/silk fibroin microspheres for the dual delivery of curcumin and piperine. J Mater Sci Mater Med. 2014; 25 (2): 401–410. doi: 10.1007/s10856-013-5082-3. PMID: 24186150.

10. Yang W, Xu H, Lan Y, Zhu Q, Liu Y, Huang S et al. Preparation and characterisation of a novel silk fibroin/hyaluronic acid/sodium alginate scaffold for skin repair. Int J Biol Macromol. 2019; 1 (130): 58–67. doi: 10.1016/j.ijbiomac.2019.02.120. PMID: 30797808.

11. Marcolin C, Draghi L, Tanzi M, Faré S. Electrospun silk fibroin-gelatin composite tubular matrices as scaffolds for small diameter blood vessel regeneration. J Mater Sci Mater Med. 2017; 28 (5): 80. doi: 10.1007/s10856-017-5884-9. PMID: 28397163.

12. Safonova LA, Bobrova MM, Agapova OI, Arkhipova AYu, Goncharenko AV, Agapov II. Fibroin Silk Based Films For Rat’s Full-Thickness Skin Wound Regeneration. Russian Journal of Transplantology and Artificial Organs. 2016; 18 (3): 74–84. [In Russ, English abstract]. doi: 10.15825/1995-1191-2016-3-74-84.

13. Li T, Song X, Weng C, Wang X, Gu L, Gong X et al. Silk fibroin/carboxymethyl chitosan hydrogel with tunable biomechanical properties has application potential as cartilage scaffold. Int J Biol Macromol. 2019; 137: 382–391. doi: 10.1016/j.ijbiomac.2019.06.245. PMID: 31271796.

14. Wang F, Wu H, Venkataraman V, Hu X. Silk fibroinpoly(lactic acid) biocomposites: Effect of protein-synthetic polymer interactions and miscibility on material properties and biological responses. Mater Sci Eng C Mater Biol Appl. 2019; 104: 109890. doi: 10.1016/j.msec.2019.109890. PMID: 31500018.

15. Roy T, Maity PP, Rameshbabu AP, Das B, John A, Dutta A et al. Core-Shell Nanofibrous Scaffold Based on Polycaprolactone-Silk Fibroin Emulsion Electrospinning for Tissue Engineering Applications. Bioengineering (Basel). 2018; 5 (3): 68. doi: 10.3390/bioengineering5030068. PMID: 30134543.

16. Zhou F, Zhang X, Cai D, Li J, Mu Q, Zhang W et al. Silk fibroin-chondroitin sulfate scaffold with immuno-inhibition property for articular cartilage repair. Acta Biomater. 2017; 63: 64–75. doi: 10.1016/j.actbio.2017.09.005. PMID: 28890259.

17. Shen Y, Tu T, Yi B, Wang X, Tang H, Liu W, Zhang Y. Electrospun acid-neutralizing fibers for the amelioration of inflammatory response. Acta Biomater. 2019; 97: 200–215. doi: 10.1016/j.actbio.2019.08.014. PMID: 31400522.

18. Agapov II, Agapova OI, Efimov AE, Sokolov DYu, Bobrova MM, Safonova LA. Sposob polucheniya biodegradiruemykh skaffoldov na osnove tkaney iz natural’nogo shelka. Patent na izobretenie RU2653428 S1, 08.05.2018.

19. Mosmann T. Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays. J lmmunol Methods. 1983; 65 (1–2): 55–63. doi: 10.1016/0022-1759(83)90303-4. PMID: 6606682.

20. Shen T, Wang T, Cheng G, Huang L, Chen L, Wu D. Dissolution behavior of silk fibroin in a low concentration CaCl2-methanol solvent: From morphology to nanostructure. Int J Biol Macromol. 2018; 1 (113): 458–463. doi: 10.1016/j.ijbiomac.2018.02.022. PMID: 29421494.

21. Hino T, Tanimoto M, Shimabayashi S. Change in secondary structure of silk fibroin during preparation of its microspheres by spray-drying and exposure to humid atmosphere. J Colloid Interface Sci. 2003; 266 (1): 68–73. doi: 10.1016/s0021-9797(03)00584-8. PMID: 12957583.

22. HuY,ZhangQ,YouR,WangL,LiM.The Relationship between Secondary Structure and Biodegradation Behavior of Silk Fibroin Scaffolds. Adv Mater Sci and Eng. 2012; 2012: 21–25. https://doi.org/10.1155/2012/185905.

23. Efimov AE, Agapova OI, Safonova LA, Bobrova MM, Agapov II. Three-dimensional analysis of micro and nanostructure of biomaterials and cells by method of scanning probe nanotomography. Russian Journal of Transplantology and Artificial Organs. 2017; 19 (4): 78–87. doi: 10.15825/1995-1191-2017-4-78-87.

24. Zhang F, Xu S, Wang Z. Pre-treatment optimization and properties of gelatin from freshwater fish scales. Food Bioprod Proc. 2011; 89: 185–193. doi: 10.1016/j.fbp.2010.05.003.

25. Su K., Wang C. Recent advances in the use of gelatin in biomedical research. Biotechnol Lett. 2015; 37 (11): 2139–2145. doi: 10.1007/s10529-015-1907-0. PMID: 26160110.

26. Abdulghani S, Mitchell GR. Biomaterials for In Situ Tissue Regeneration: A Review. Biomolecules. 2019; 9 (11): 750. doi: 10.3390/biom9110750. PMID: 31752393; PMCID: PMC6920773.


Review

For citations:


Safonova L.A., Bobrova M.M., Efimov A.E., Agapova O.I., Agapov I.I. Biodegradable materials based on natural silk fabric as promising scaffolds for tissue engineering and regenerative medicine. Russian Journal of Transplantology and Artificial Organs. 2020;22(4):105-114. https://doi.org/10.15825/1995-1191-2020-4-105-114

Views: 836


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1995-1191 (Print)