Functional efficiency of cell-engineered liver constructs based on tissue-specific matrix (experimental model of chronic liver failure)
https://doi.org/10.15825/1995-1191-2020-4-89-97
Abstract
Objective: to investigate the functional efficiency of a cell-engineered construct (CEC) of the liver based on tissuespecific matrix consisting of decellularized rat liver fragments, allogeneic liver cells and multipotent mesenchymal stromal cells (MSCs) isolated from the bone marrow on an experimental model of chronic liver failure (CLF).
Materials and methods. In creating liver CECs, the liver for decellularization and liver cells were obtained from male Wistar rats. MSCs were isolated from rat bone marrow. The functional efficacy of CEC was investigated on an experimental CLF model obtained by priming rats with CCl4 solution. At different periods after implantation, the outcomes were assessed based on the biochemical parameters of cytolysis. Morphological changes in the liver were analyzed by histochemical methods in the control (administration of saline solution into the liver parenchyma) and experimental (administration of liver CEC into the liver parenchyma) groups.
Results. It was shown that implantation of the proposed CEC normalizes blood biochemical parameters and structural disorders of the damaged rat liver faster (by day 30 after introduction of CEC instead of day 180 in the control). The CEC was also shown to have reduced animal mortality from 50 to 0%, which is due to early activation of proliferation of viable liver cells and faster formation of new blood vessels. These effects are down to either stimulation of the internal regenerative potential of the damaged liver during CEC implantation or long-term functioning of the transplanted cells as part of the CEC based on the decellularized liver matrix.
Conclusion. The liver CEC, implanted into the liver parenchyma in laboratory animals with a CLF model, has a functional activity.
About the Authors
M. Yu. ShagidulinRussian Federation
1, Shchukinskaya str., Moscow, 123182, Russian Federation
Phone: (499) 196-87-90
N. A. Onishchenko
Russian Federation
Moscow
Yu. B. Basok
Russian Federation
Moscow
A. M. Grigoriev
Russian Federation
Moscow
A. D. Kirillova
Russian Federation
Moscow
E. A. Nemets
Russian Federation
Moscow
E. A. Volkova
Russian Federation
Moscow
I. M. Iljinsky
Russian Federation
Moscow
N. P. Mozheiko
Russian Federation
Moscow
V. I. Sevastianov
Russian Federation
Moscow
S. V. Gautier
Russian Federation
Moscow
References
1. Salim MS, Issa AM, Farrag ARH, Gabr H. Decellularized liver bioscaffold: a histological and immunohistochemical comparison between normal, fibrotic and hepatocellular carcinoma. Clin Exp Hepatol. 2019; 5 (1): 35–47. doi: 10.5114/ceh.2019.83155.
2. Acun A, Oganesyan R, Uygun BE. Liver bioengineering: promise, pitfalls, and hurdles to overcome. Curr Transplant Rep. 2019; 6 (2): 119–126. doi: 10.1007/s40472-019-00236-3.
3. Mazza G, Al-Akkad W, Rombouts K, Pinzani M. Liver tissue engineering: from implantable tissue to whole organ engineering. Hepatol Commun. 2017; 2 (2): 131–141. doi: 10.1002/hep4.1136.
4. Elchaninov A, Fatkhudinov T, Usman N, Arutyunyan I, Makarov A, Lokhonina A et al. Multipotent stromal cells stimulate liver regeneration by influencing the macrophage polarization in rat. World J Hepatol. 2018; 10 (2): 287–296. doi: 10.4254/wjh.v10.i2.287.
5. Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011; 32 (12): 3233–3243. doi: 10.1016/j.biomaterials.2011.01.057.
6. Uygun BE, Yarmush ML, Uygun K.Application of wholeorgan tissue engineering in hepatology. Nature Reviews Gastroenterology & Hepatology. 2012; 9 (12): 738–744. doi: 10.1038/nrgastro.2012.140.
7. Rossi EA, Quintanilha LF, Nonaka CKV, Souza BSF. Advances in hepatic tissue bioengineering with decellularized liver bioscaffold. Stem Cells Int. 2019; 2019: 2693189. doi: 10.1155/2019/2693189.
8. Ferng AS, Connell AM, Marsh KM, Qu N, Medina AO, Bajaj N et al. Acellular porcine heart matrices: whole organ decellularization with 3D-bioscaffold & vascular preservation. J Clin Transl Res. 2017; 3 (2): 260–270.
9. Figliuzzi M, Bonandrini B, Remuzzi A. Decellularized kidney matrix as functional material for whole organ tissue engineering. J Appl Biomater Funct Mater. 2017; 15 (4): e326–e333. doi: 10.5301/jabfm.5000393.
10. Kuna VK, Kvarnström N, Elebring E, Holgersson SS. Isolation and decellularization of a whole porcine pancreas. J Vis Exp. 2018; (140): 58302. doi: 10.3791/58302. PMID: 30371658.
11. Daryabari SS, Kajbafzadeh AM, Fendereski K, Ghorbani F, Dehnavi M, Rostami M et al. Development of an efficient perfusion-based protocol for whole-organ decellularization of the ovine uterus as a human-sized model and in vivo application of the bioscaffolds. J Assist Reprod Genet. 2019; 36 (6): 1211–1223. doi: 10.1007/s10815-019-01463-4.
12. Gautier SV, Sevastyanov VI, Shagidulin MYu, Nemets EA, Basok YuB. Tkanespetsificheskiy matriks dlya tkanevoy inzhenerii parenkhimatoznogo organa i sposob ego polucheniya. Patent na izobretenie RU 2693432 C2, 02.07.2019.
13. Shumakov VI, Onishhenko NA. Biologicheskie rezervy kletok kostnogo mozga i korrekcija organnyh disfunkcij: [monografija]. M.: Lavr, 2009. 307.
14. Gautier SV, Shagidulin MYu, Onishhenko NA, Krasheninnikov ME, Nikol’skaja AO, Bashkina LV, Sevast’janov VI. Sposob lechenija pechenochnoj nedostatochnosti. Patent na izobretenie RU 2586952 C1, 10.06.2016.
15. Shagidulin MYu, Onishchenko NA, Krasheninnikov ME, Iljinsky IM, Mogeiko NP, Shmerko NP et al. Survival of liver cells, immobilized on 3d-matrixes, in liver failure model. Russian Journal of Transplantology and Artificial Organs. 2011; 13 (3): 59–66. [In Russ, English abstract]. doi: 10.15825/1995-1191-2011-3-59-66.
16. Nikol’skaja AO, Gonikova ZZ, Kirsanova LA, Shagidulin MJu, Onishhenko NA, Sevast’janov VI. Sposob modelirovanija tjazhjologo spontanno neobratimogo povrezhdenija pecheni. Patent na izobretenie RU 2633296 C, 11.10.2017.
17. Shagidulin MYu, Onishchenko NA, Krasheninnikov ME, Nikol’skaja AO, Volkova EA, Il’inskij IM et al. The influence of the ratio of liver cells and bone marrow in the implantable cell-engineering structures of the liver on the recovery efficiency of functional and morphological parameters in chronic liver failure. Russian Journal of Transplantology and Artificial Organs. 2019; 21 (1): 122–134. [In Russ, English abstract]. doi: 10.15825/1995-1191-2019-1-122-134.
18. Avtandilov GG. Medicinskaja morfometrija. Rukovodstvo. M.: Medicina, 1990. 384.
19. Ishak K., Baptista A, Bianchi L, Callea F, Grootes J et al. Gistologicheskaya ocenka stadii i stepeni hronicheskogo gepatita. Klinicheskaya gepatologiya. 2010; 2: 8–11.
Review
For citations:
Shagidulin M.Yu., Onishchenko N.A., Basok Yu.B., Grigoriev A.M., Kirillova A.D., Nemets E.A., Volkova E.A., Iljinsky I.M., Mozheiko N.P., Sevastianov V.I., Gautier S.V. Functional efficiency of cell-engineered liver constructs based on tissue-specific matrix (experimental model of chronic liver failure). Russian Journal of Transplantology and Artificial Organs. 2020;22(4):89-97. https://doi.org/10.15825/1995-1191-2020-4-89-97