Micro-RNA in lung transplant recipients: the prospects of clinical application
https://doi.org/10.15825/1995-1191-2019-2-138-144
Abstract
This review summarizes the current literature devoted to the analysis of diagnostic role of biomarkers in rejection of the transplanted lung. Numerous researches have focused on small non-coding RNAs (micro-RNA) that regulate gene expression and affect various cell functions. Variations in the concentration of different micro-RNA have been shown in some pathological processes, including rejection of solid organs. Probably, measuring the level of micro-RNA in lung transplant may have value in the assessment of risk of rejection and possibility of minimizing immunosuppressive therapy. The accumulation of clinical data on the correlation of profiles of various biomarkers with clinical and laboratory parameters in lung recipients will help in finding non-invasive methods for the diagnosis rejection and improving long-term results of transplantation.
About the Authors
D. A. VelikiyRussian Federation
Moscow
S. O. Sharapchenko
Russian Federation
Sharapchenko Sofya Olegovna
1, Shchukinskaya str., Moscow, 123182, Tel. (495) 190-35-62
I. V. Pashkov
Russian Federation
Moscow
O. E. Gichkun
Russian Federation
Moscow
O. P. Shevchenko
Russian Federation
References
1. Chambers DC, Yusen RD, Cherikh WS, Goldfarb SB, Kucheryavaya AY, Khusch K et al. International Society for Heart and Lung Transplantation. The Registry of the International Society for Heart and Lung Transplantation: Thirty-fourth Adult Lung And Heart-Lung Transplantation Report-2017; Focus Theme: Allograft ischemic time. JHeart Lung Transplant. 2017; 36 (10): 1047-1059.
2. Kreisel D, KrupnickAS, Puri V, Guthrie TJ, Trulock EP, Meyers BF et al. Short and long-term outcomes of 1000 adult lung transplant recipients at a single center. J Thorac Cardiovasc Surg. 2011; 141 (1): 215-222. doi: 10.1016/j.jtcvs.2010.09.009.
3. Shevchenko AO, NikitinaEA, Koloskova NN, Shevchenko OP, Got’ye SV Kontroliruyemaya arterial’naya gipertenziya i vyzhivayemost’ bez nezhelatel’nykh sobytiy u retsipi-yentov serdtsa. Kardiovaskulyarnaya terapiya i profilak-tika. 2018; 17 (4): 4-11.
4. Benzimra M, Calligaro GL, Glanville AR. Acute rejection. J Thorac Dis. 2017; 9 (12): 5440-5457. doi: 10.21037/jtd.2017.11.83.
5. Gharib SA, Edelman JD, Ge L, Chen P. Acute cellular rejection elicits distinct microRNA signatures in airway epithelium of lung transplant patients. Transplant Direct. 2015; 1 (10). pii: e44.
6. Verleden SE, Sacreas A, Vos R, Vanaudenaerde BM, Verleden GM. Advances in understanding bronchiolitis obliterans after lung transplantation. Chest. 2016; 150 (1): 219-225. doi: 10.1016/j.chest.2016.04.014.
7. Weigt SS, Der Hovanessian A, Wallace WD, Lynch JP 3rd, Belperio JA. Bronchiolitis obliterans syndrome: the Achilles’ heel of lung transplantation. Semin Respir Crit Care Med. 2013; 34 (3): 336-351. doi: 10.1055/s-0033-1348467.
8. Todd JL, Palmer SM. Bronchiolitis obliterans syndrome: the final frontier for lung transplantation. Chest. 2011; 140 (2): 502-508. doi: 10.1378/chest.10-2838.
9. Der Hovanessian A, Wallace WD, Lynch JP 3rd, Bel-perio JA, Weigt SS. Chronic lung allograft dysfunction: evolving concepts and therapies. Semin Respir Crit Care Med. 2018; 39 (2): 155-171. doi: 10.1055/s-0037-1618567.
10. Ladak SS, Ward C, Ali S. The potential role of mi-croRNAs in lung allograft rejection. J Heart Lung Transplant. 2016; 35 (5): 550-559. doi: 10.1016/j.hea-lun.2016.03.018.
11. Xu Z, Nayak D, Yang W, Baskaran G, Ramachandran S, Sarma N et al. Dysregulated microRNA expression and chronic lung allograft rejection in recipients with antibodies to donor HLA. Am J Transplant. 2015; 15 (7): 1933-1947. doi: 10.nn/ajt.13185.
12. Hamilton BC, Kukreja J, Ware LB, Matthay MA. Protein biomarkers associated with primary graft dysfunction following lung transplantation. Am J Physiol Lung Cell Mol Physiol. 2017; 312 (4): L531-L541. doi: 10.1152/ajplung.00454.2016.
13. Verleden SE, Vos R, Vanaudenaerde BM, Verleden GM. Chronic lung allograft dysfunction phenotypes and treatment. J Thorac Dis. 2017; 9 (8): 2650-2659. doi: 10.21037/jtd.2017.07.81.
14. Berastegui C, Gomez-Olles S, Sanchez-Vidaurre S, Culebras M, Monforte V, Lopez-Meseguer M et al. BALF cytokines in different phenotypes of chronic lung allograft dysfunction in lung transplant patients. Clin Transplant. 2017; 31 (3). doi: 10.1111/ctr.12898.
15. Greenland JR, Jewell NP, Gottschall M, Trivedi NN, Kukreja J, Hays SR et al. Bronchoalveolarlavage cell im-munophenotyping facilitates diagnosis of lung allograft rejection. Am J Transplant. 2014; 14 (4): 831-840. doi: 10.1111/ajt.12630.
16. Sacreas A, Yang JYC, Vanaudenaerde BM, Sigdel TK, Liberto JM, Damm I et al. The common rejection module in chronic rejection post lung transplantation. PLoS One. 2018; 13 (10): e0205107. doi: 10.1371/journal.pone.0205107.
17. KhatriP, Roedder S, KimuraN, De VusserK,MorganAA, Gong Y et al. A common rejection module (CRM) for acute rejection across multiple organs identifies novel therapeutics for organ transplantation. J Exp Med. 2013; 210 (11): 2205-2221. doi: 10.1084/jem.20122709.
18. Zhang R, Fang H, Chen R, Ochando JC, Ding Y, Xu J. IL-17A is critical for CD8+ T effector response in airway epithelial injury after transplantation. Transplantation. 2018; 102 (12): e483-e493. doi: 10.1097/TP.0000000000002452.
19. Gupta PK, Wagner SR, Wu Q, Shilling RA. IL-17A blockade attenuates obliterative bronchiolitis and IFN-y cellular immune response in lung allografts. Am J Res-pir Cell Mol Biol. 2017; 56 (6): 708-715. doi: 10.1165/rcmb.2016-0154OC.
20. Agbor-Enoh S, Chan JL, Singh A, Tunc I, Gorham S, Zhu J et al. Circulating cell-free DNA as a biomarker of tissue injury: assessment in a cardiac xenotransplantation model. J Heart Lung Transplant. 2018; 37 (8): 967-975. doi: 10.1016/j.healun.2018.04.009.
21. Zou J, Duffy B, Slade M, Young AL, Steward N, Ha-chem R et al. Rapid detection of donor cell free DNA in lung transplant recipients with rejections using donor-recipient HLA mismatch. Hum Immunol. 2017; 78 (4): 342-349. doi: 10.1016/j.humimm.2017.03.002.
22. Yang JYC, Sarwal MM. Transplant genetics and genomics. Nat Rev Genet. 2017; 18 (5): 309-326. doi: 10.1038/nrg.2017.12.
23. Yang JYC, Verleden SE, Zarinsefat A, Vanaudenaer-de BM, Vos R, Verleden GM et al. Cell-free DNA and CXCL10 derived from bronchoalveolar lavage predict lung transplant survival. J Clin Med. 2019; 8 (2). pii: E241. doi: 10.3390/jcm8020241.
24. Jaksch P, Taghavi S, Klepetko W, Salama M. Pretransplant serum human chitinase-like glycoprotein YKL-40 concentrations independently predict bronchiolitis obliterans development in lung transplant recipients. J Thorac Cardiovasc Surg. 2014; 148 (1): 273-281. doi: 10.1016/j.jtcvs.2014.02.059.
25. Der Hovanessian A, Weigt SS, Palchevskiy V, Shino MY, Sayah DM, Gregson AL et al. The role of TGF-P in the Association between primary graft dysfunction and bronchiolitis obliterans syndrome. Am J Transplant. 2016; 16 (2): 640-649. doi: 10.1111/ajt.13475.
26. Westall GP, Snell GI, Loskot M, Levvey B, O’Hehir R, Hedger MP et al. Activin biology after lung transplantation. Transplant Direct. 2017; 3 (6): e159. doi: 10.1097/TXD.0000000000000676.
27. Harris A, Krams SM, Martinez OM. MicroRNAs as immune regulators: implications for transplantation. Am J Transplant. 2010; 10 (4): 713-719. doi: 10.1111/j.1600-6143.2010.03032.x
28. Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of micro-RNAs. Genome Res. 2009; 19 (1): 92-105.
29. Sood P, Krek A, Zavolan M, Macino G, Rajewsky N. Cell-type-specific signatures of microRNAs on target mRNA expression. Proc Natl Acad Sci USA. 2006; 103 (8): 2746-2751.
30. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009; 136 (2): 215-233.
31. Sayed D, Abdellatif M. MicroRNAs in development and disease. Physiol Rev. 2011; 91 (3): 827-887.
32. Adams BD, Kasinski AL, Slack FJ. Aberrant regulation and function of microRNAs in cancer. Curr Biol. 2014; 24 (16): R762-76.
33. Velikij DA, Gichkun OE, Shevchenko AO. Mikro-RNK: rol’ v razvitii serdechno-sosudistyh zabolevanij, perspektivy klinicheskogo primeneniya. Klinicheskaya laboratornaya diagnostika. 2018; 63 (7): 403-409.
34. Di Carlo S, Rossi E, Politano G, Inghilleri S, Morbini P, Calabrese F et al. Identification of miRNAs potentially involved in bronchiolitis obliterans syndrome: a computational study. PLoS One. 2016; 11 (8): e0161771. doi: 10.1371/journal.pone.0161771.
35. Atarod S, Dickinson AM. MicroRNAs: The missing link in the biology of graft-versus-host disease? Front Immunol. 2013; 4: 420. doi: 10.3389/fimmu.2013.00420.
36. Zampetaki A, Mayr M. MicroRNAs in vascular and metabolic disease. Circ Res. 2012; 110 3): 508-522. doi: 10.1161/CIRCRESAHA.111.247445.
37. Amrouche L, Rabant M, Anglicheau D. MicroRNAs as biomarkers of graft outcome. Transplant Rev (Orlando). 2014; 28 (3): 111-118. doi: 10.1016/j.trre.2014.03.003.
38. Shan J, Feng L, Luo L, Wu W, Li C, Li S et al. Micro-RNAs: potential biomarker in organ transplantation. TransplImmunol. 2011; 24 (4): 210-215. doi: 10.1016/j.trim.201L03.004.
39. Sarma NJ, Tiriveedhi V, Ramachandran S, Crippin J, Chapman W, Mohanakumar T. Modulation of immune responses following solid organtransplantation by mi-croRNA. Exp Mol Pathol. 2012; 93 (3): 378-385. doi: 10.1016/j.yexmp.2012.09.020.
40. Sukma DI, Hollander Z, Lam KK, McManus JW, Teb-butt SJ, NgRTet al. Association of Serum MiR-142-3p and MiR-101-3p Levels with Acute Cellular Rejection after Heart Transplantation. PLoS One. 2017; 12 (1): e0170842.
41. Duong Van Huyen JP, Tible M, Gay A, Guillemain R, Aubert O, Varnous S et al. MicroRNAs as non-invasive biomarkers of heart transplant rejection. Eur Heart J. 2014; 35 (45): 3194-3202.
42. Singh N, Heggermont W, Fieuws S, Vanhaecke J et al. Endothelium-enriched microRNAs as diagnostic biomarkers for cardiac allograft vasculopathy. J Heart Lung Transplant. 2015; 34: 1376-1384.
43. Zununi Vahed S, Poursadegh Zonouzi A, Mahmood-poor F, Samadi N, Ardalan M, Omidi Y. Circulating miR-150, miR-192, miR-200b, and miR-423-3p as Noninvasive biomarkers of chronic allograft dysfunction. Arch Med Res. 2017; 48 (1): 96-104. doi: 10.1016/j.arc-med.2017.03.004.
44. Sui W, Yang M, Li F, Chen H, Chen J, Ou M et al. Serum microRNAs as new diagnostic biomarkers for pre- and post-kidney transplantation. Transplant Proc. 2014; 46 (10): 3358-3362. doi: 10.1016/j.transpro-ceed.2014.08.050.
45. Scian MJ, Maluf DG, Mas VR. MiRNAs in kidney transplantation: potential role as new biomarkers. Expert Rev Mol Diagn. 2013; 13 (1): 93-104. doi: 10.1586/erm.12.131.
46. Farid WR, Pan Q, van der Meer AJ, de Ruiter PE, Ra-makrishnaiah V, de Jonge J et al. Hepatocyte-derived microRNAs as serum biomarkers of hepatic injury and rejection after liver transplantation. Liver Transpl. 2012; 18 (3): 290-297.
47. Liu X, Zhan Z, Xu L, Ma F, Li D, Guo Z et al. Micro-RNA-148/152 impair innate response and antigen presentation of TLR-triggered dendritic cells by targeting CaMKIIa. J Immunol. 2010; 185 (12): 7244-7251.
48. De Vlaminck I, Martin L, Kertesz M, Patel K, Ko-warsky M, Strehl C et al. Noninvasive monitoring of infection and rejection after lung transplantation. Proc Natl Acad Sci USA. 2015; 112 (43): 13336-13341. doi: 10.1073/pnas.1517494112.
49. Zhang W, Zhou T, Ma SF, Machado RF, Bhorade SM, Garcia JG. MicroRNAs implicated in dysregulation of gene expression following human lung transplantation. TranslRespirMed. 2013; 1 (1). doi: 10.1186/2213-0802-1-12.
50. Wang D, Zhang H, Li M, Frid MG, Flockton AR, McKe-on BA et al. MicroRNA-124 controls the proliferative, migratory, and inflammatory phenotype of pulmonary vascular fibroblasts. CircRes. 2014; 114 (1): 67-78. doi: 10.1161/Circresaha.114.301633.
51. Sigdel TK, Vitalone MJ, Tran TQ, Dai H, Hsieh S-C, Sal-vatierra O et al. A rapid noninvasive assay for the detection of renal transplant injury. Transplantation. 2013; 96 (1): 97-101. doi: 10.1097/TP.0b013e318295ee5a.
52. Wang J, Cao H, HongX, Chen GH, Fan HM, Li QC et al. MicroRNA screening and functional study of obliterative bronchiolitis in a rat model simulating lung transplantation. Genet Mol Res. 2015; 14 (4): 19309-19316. doi: 10.4238/2015.December.29.40.
53. Dong M, Wang X, Zhao HL, Chen XL, Yuan JH, Guo JY et al. Integrated analysis of transcription factor, mi-croRNA and LncRNA in an animal model of obliterative bronchiolitis. Int J Clin Exp Pathol. 2015; 8 (6): 7050-7058.
54. Xu Z, Nayak DK, Benshoff N, Hachem R, Gelman AE, Mohanakumar T. De novo-developed antibodies to donor MHC antigens lead to dysregulation of microRNAs and induction of MHC class II. J Immunol. 2015; 194 (12): 6133-6143. doi: 10.4049/jimmunol.1401848.
55. Zhu L, Xu H, Lv W, He Z, Ye P Wang Y et al. MiR-199b-5p regulates immune-mediated allograft rejection after lung transplantation through the GSK3P and NF-kB pathways. Inflammation. 2018; 41 (4): 1524-1535. doi: 10.1007/s10753-018-0799-2.
56. Budding K, Rossato M, van de Graaf EA, Kwakkel-van Erp JM, Radstake TRDJ, Otten HG. Serum miRNAs as potential biomarkers for the bronchiolitis obliterans syndrome after lung transplantation. Transpl Immunol. 2017; 42: 1-4. doi: 10.1016/j.trim.2017.04.002.
57. Xu Z, Ramachandran S, Gunasekaran M, Zhou F, Tru-lock E, Kreisel D et al. MicroRNA-144 dysregulates the transforming growth factor-p signaling cascade and contributes to the development of bronchiolitis obliterans syndrome after human lung transplantation. J Heart Lung Transplant. 2015; 34 (9): 1154-1162. doi: 10.1016/j.healun.2015.03.021.
58. Xu Z, Yang W, Steward N, Sweet SC, Danziger-Isakov L, Heeger PS et al. Role of circulating microRNAs in the immunopathogenesis of rejection after pediatric lung transplantation. Transplantation. 2017; 101 (10): 24612468. doi: 10.1097/TP.0000000000001595.
Review
For citations:
Velikiy D.A., Sharapchenko S.O., Pashkov I.V., Gichkun O.E., Shevchenko O.P. Micro-RNA in lung transplant recipients: the prospects of clinical application. Russian Journal of Transplantology and Artificial Organs. 2019;21(2):138-144. (In Russ.) https://doi.org/10.15825/1995-1191-2019-2-138-144