Preview

Вестник трансплантологии и искусственных органов

Расширенный поиск

ПАТОГЕНЕТИЧЕСКИЕ МЕХАНИЗМЫ РАЗВИТИЯ ИШЕМИЧЕСКОГО И РЕПЕРФУЗИОННОГО ПОВРЕЖДЕНИЯ ПОЧКИ КАК ПЕРСПЕКТИВНЫЕ МИШЕНИ СПЕЦИФИЧЕСКОЙ ТЕРАПИИ

https://doi.org/10.15825/1995-1191-2015-1-147-156

Аннотация

Ишемическое и реперфузионное повреждение является сложным многофакторным процессом, повреждающим почечный трансплантат. Знание и понимание патогенетических механизмов процессов повреждения позволяет применять различные биологические агенты для снижения данного повреждения. Однако применение большинства биологических агентов остается пока еще только в эксперименте. Цель данного обзора – показать участников патогенетических механизмов, главным образом воспалительных медиаторов (цитокинов, хемокинов), их взаимодействие и последствия их повреждающего воздействия на ткань почечного трансплантата. 

Об авторах

А. В. Ватазин
ГБУЗ МО «Московский областной научно-исследовательский клинический институт им. М.Ф. Владимирского», Москва, Российская Федерация
Россия


И. В. Нестеренко
ГБУЗ МО «Московский областной научно-исследовательский клинический институт им. М.Ф. Владимирского», Москва, Российская Федерация
Россия


А. Б. Зулькарнаев
ГБУЗ МО «Московский областной научно-исследовательский клинический институт им. М.Ф. Владимирского», Москва, Российская Федерация
Россия


Н. Л. Шахов
ГБУЗ МО «Московский областной научно-исследовательский клинический институт им. М.Ф. Владимирского», Москва, Российская Федерация
Россия


Список литературы

1. Каабак ММ. Послеоперационное лечение реперфузионного повреждения трансплантированной почки: новый взгляд на патогенез реперфузионной травмы: дис. М., 2003. Kaabak MM. Post-operative treatment of reperfusion damage of the transplanted kidney: a new approach to the pathogenesis reperfusion injury: dis. M., 2003. (in Rus).

2. Patschan D, Patschan S, Muller GA. Inflammation and microvasculopathy in Renal Ischemia Reperfusion Injury. Hindawi Publishing Corporation Journal of Transplantation. 2012; Article ID 764154: 7.

3. Boros P, Bromberg JS. New Cellular and Molecular Immune Pathways in Ischemia/Reperfusion Injury. American Journal of Transplantation. 2006; 6: 652–658.

4. Bergler T1, Hoffmann U, Bergler E. Toll-like receptor 4 in experimental kidney transplantation: early mediator of endogenous danger signals. Nephron Exp Nephrol. 2012; 121 (3–4): e59–70.

5. Kristin Moretha, Helena Freya, Mario Huboa. Biglycantriggered TLR-2and TLR-4-signaling exacerbates the pathophysiology of ischemic acute kidney injury. Matrix Biology. 28 January 2014.

6. Kristin Moreth, Rebekka Brodbeck, Andrea Babelova, Liliana Schaefer. The proteoglycan biglycan regulates expression of the B cell chemoattractant CXCL13 and aggravates murine lupus nephritis. J. Clin. Invest. 2010; 120 (12): 4251–4272.

7. Babelova A et al. Biglycan, a danger signal that activates the NLRP3 inflammasome via toll-like and P2X receptors. J Biol Chem. 2009; 284 (36): 24035–24048.

8. Jinyang Zeng-Brouwers, Liliana Schaefer. Role of extracellular matrix components in renal pathophysiology. J. Matrix Biology. 2013. Available from: http://www.pzf. de/allg/research/schaefer.php

9. Popovic ZV1, Wang S, Papatriantafyllou M, Kaya Z. The proteoglycan biglycan enhances antigen-specific T-cell activation potentially via MyD88 and TRIF pathways and triggers autoimmune perimyocarditis. J. Immunol. 2011 Dec 15; 187 (12): 6217–6226.

10. Kolářová H, Ambrůzová B, Svihálková Šindlerová L, Klinke A, Kubala L. Modulation of Endothelial Glycocalyx Structure under Inflammatory Conditions. Mediators Inflamm. 2014; 2014: 694312.

11. Bharadwaj A, Bydoun M, Holloway R, Waisman D. Annexin A2 heterotetramer: structure and function. Int. J. Mol. Sci. 2013 Mar 19; 14 (3): 6259–6305.

12. Antonios H. Tzamaloukas, Deepak Malhotra, Bradley H. Rosen. Principles of Management of Severe Hyponatremia. J. Am. Heart Assoc. Feb 2013; 2 (1): e005199.

13. Lawson C, Wolf S. ICAM-1 signaling in endothelial cells. Pharmacol Rep. 2009 Jan-Feb; 61 (1): 22–32.

14. Hye Ryoun Jang, Hamid Rabb. The innate immune response in ischemic acute kidney injury. Clin. Immunol. 2009 January; 130 (1): 41–50.

15. de Vries DK1, Lindeman JH, Tsikas D, de Heer E, Roos A. Early renal ischemia-reperfusion injury in humans is dominated by IL-6 release from the allograft. Am. J. Transplant. 2009 Jul; 9 (7): 1574–1584.

16. Rider P., Carmi Y. IL-1α and IL-1β recruit different myeloid cells and promote different stages of sterile inflammation. J. Immunol. 2011 Nov 1; 187 (9): 4835–4843.

17. Nimesh SA. Patel. Endogenous IL-6 Enhances the Renal Injury, Dysfunction and Inflammation Caused by Ischemia/Reperfusion. Journal of Pharmacology and Experimental Therapeutics. 2009; 312 (3): 1170–1178.

18. Sikka Gautam, Miller Karen, Berkowitz Dan, Barouch Lili. Interleukin 10 knockout frail mice develop cardiac and vascular dysfunction with increased age. J. Experimental Gerontology. 2013 Feb; 48 (2): 128–135.

19. Saraiva M, O'Garra A. The regulation of IL-10 production by immune cells. Nat. Rev. Immunol. March 2010; 10 (3): 170–181.

20. Hammer M, Mages J. Control of dual-specificity phosphatase-1 expression in activated macrophages by IL-10. Eur. J. Immunol. March 2010; 35 (10): 2991–3001.

21. Sik Lee, Sarah Huen, Hitoshi Nishio, Saori Nishio. Distinct Macrophage Phenotypes Contribute to Kidney Injury and Repair. J. Am. Soc. Nephrol. Feb 2011; 22 (2): 317–326.

22. Bettelli E, Oukka M, Kuchroo VK. IL-17 and Th17 Cells. Annu. Rev. Immunol. 2009; 27: 485–517.

23. Li L, Liping Huang, Amy L. Vergis, Hong Ye. IL-17 produced by neutrophils regulates IFN-γ–mediated neutrophil migration in mouse kidney ischemia-reperfusion injury. The Journal of Clinical Investigation. January 2010; 120 (1).

24. Jeffrey A. Leslie, M.D., Kirstan K. Meldrum. The Role of Interleukin-18 in Renal Injury. Journal of Surgical Research. 2008; 145: 170–175.

25. Therwa Hamza, John B. Barnett, Bingyun Li. Interleukin 12 a Key Immunoregulatory Cytokine in Infection Applications. Int. J. Mol. Sci. 2010; 11 (3): 789–806.

26. Qi Peng, Ke Li, Lesley A. Smyth, Guolan Xing. C3a and C5a Promote Renal Ischemia-Reperfusion Injury. J. Am. Soc. Nephrol. Sep 2012; 23 (9): 1474–1485.

27. Kaabak M1, Babenko N, Kuznetsov O. Eculizumab reverses the potentially fatal effects of kidney graft reperfusion injury. Pediatr Transplant. 2014 Mar; 18 (2): E44–47.

28. Lo DJ, Weaver TA, Kleiner DE, Mannon RB. Chemokines and their receptors in human renal allotransplantation. Transplantation. 2011 Jan 15; 91 (1): 70–77.

29. Kolattukudy PE, Niu J. Inflammation, endoplasmic reticulum stress, autophagy, and the monocyte chemoattractant protein-1/CCR2 pathway. Circ. Res. 2012 Jan 6; 110 (1): 174–189.

30. Fiorina P, Ansari MJ, Jurewicz M. Role of CXC chemokine receptor 3 pathway in renal ischemic injury. J. Am. Soc. Nephrol. 2006; 17: 716–723.

31. Bertini R, Barcelos LS. Receptor binding mode and pharmacological characterization of a potent and selective dual CXCR1/CXCR2 non-competitive allosteric inhibitor. Br. J. Pharmacol. Jan 2012; 165 (2): 436–454.

32. Andrew Siedlecki, William Irish, Daniel C. Brennan Delayed Graft Function in the Kidney Transplant. Am. J. Transplant. Nov 2011; 11 (11): 2279–2296.

33. Furuichi K, Wada T, Iwata Y. CCR2 signaling contributes to ischemia-reperfusion injury in kidney. J. Am. Soc. Nephrol. 2003; 14: 2503–2515.

34. Ingrid Stroo, Geurt Stokman, Gwen JD Teske. Chemokine expression in renal ischemia/reperfusion injury is most profound during the reparative phase. Int. Immunol. Jun 2010; 22 (6): 433–442.

35. Victor E Laubach, Brent A French, Mark D Okusa. Targeting of Adenosine Receptors in Ischemia-Reperfusion Injury. Expert Opin Ther. Targets. Jan 2011; 15 (1): 103–118.

36. Sanchez A, Tripathy D. RANTES release contributes to the protective action of PACAP38 against sodium nitroprusside in cortical neurons. Neuropeptides. 2009 Aug; 43 (4): 315–320.

37. Rogers NM, Stephenson MD. Amelioration of renal ischemia–reperfusion injury by liposomal delivery of curcumin to renal tubular epithelial and antigen-presenting cells. Br. J. Pharmacol. May 2012; 166 (1): 194–209.

38. Xu Wang, Caroline Watson, Joshua S. Sharp. Oligomeric Structure of the Chemokine CCL5/RANTES from NMR, MS, and SAXS Data. Structure. Aug 10, 2011; 19 (8): 1138–1148.

39. Matheus Correa-Costa, Hátylas Azevedo. Transcriptome Analysis of Renal Ischemia/Reperfusion Injury and Its Modulation by Ischemic Pre-Conditioning or Hemin Treatment. PLoS One. 2012; 7 (11): e49569.

40. Furuichi K, Gao JL, Murphy PM. Chemokine receptor CX3CR1 regulates renal interstitial fibrosis after ischemia-reperfusion injury. Am. J. Pathol. 2006; 169: 372–387.

41. Li Li, Liping Huang. The chemokine receptors CCR2 and CX3CR1 mediate monocyte/macrophage trafficking in kidney ischemia–reperfusion injury. Kidney Int. Dec 2008; 74 (12): 1526–1537.

42. Li Li MD, Macrophages PhD. Dendritic cells and Kidney Ischemia-Reperfusion Injury. Semin Nephrol. May 2010; 30 (3): 268–277.

43. Grosse GM, Tryc AB. The temporal dynamics of plasma fractalkine levels in ischemic stroke: association with clinical severity and outcome. J. Neuroinflammation. 2014 Apr 10; 11(1):74.

44. Furuichi K, Kaneko S, Wada T. Chemokine/chemokine receptor-mediated inflammation regulates pathologic changes from acute kidney injury to chronic kidney disease. Clin. Exp. Nephrol. 2009 Feb; 13 (1): 9–14.

45. Vatazin AV, Siniutin AA, Zul'karnaev AB. Plasmapheresis in controlling of the severity of ischemia-reperfusion damage of renal transplant. J. Clin. Nephrology. 2013: 4.

46. Hardinger KL, Brennan DC. Novel immunosuppressive agents in kidney transplantation. World J. Transplant. 2013 Dec 24; 3 (4): 68–77.

47. Zhang L1, Zhu Z, Liu J. Protective effect of N-acetylcysteine (NAC) on renal ischemia/reperfusion injury through Nrf2 signaling pathway. J. Recept Signal Transduct Res. 2014 Apr 15.

48. Wang X1, Tao T, Ding R. Kidney Protection against Ischemia/Reperfusion Injury by Myofibrillogenesis Regulator-1. Am. J. Nephrol. 2014 Apr 2; 39 (4): 279–287.

49. Ruan Y, Wang L, Zhao Y. Carbon monoxide potently prevents ischemia-induced high-mobility group box 1 translocation and release and protects against lethal renal ischemia-reperfusion injury. Kidney Int. 2014 Apr 2. doi: 10.1038/ki.2014.80.


Рецензия

Для цитирования:


Ватазин А.В., Нестеренко И.В., Зулькарнаев А.Б., Шахов Н.Л. ПАТОГЕНЕТИЧЕСКИЕ МЕХАНИЗМЫ РАЗВИТИЯ ИШЕМИЧЕСКОГО И РЕПЕРФУЗИОННОГО ПОВРЕЖДЕНИЯ ПОЧКИ КАК ПЕРСПЕКТИВНЫЕ МИШЕНИ СПЕЦИФИЧЕСКОЙ ТЕРАПИИ. Вестник трансплантологии и искусственных органов. 2015;17(1):147-156. https://doi.org/10.15825/1995-1191-2015-1-147-156

For citation:


Vatazin A.V., Nesterenko I.V., Zulkarnaev A.B., Shakhov N.L. PATHOGENETIC MECHANISMS OF THE DEVELOPMENT OF ISCHEMIC AND REPERFUSION DAMAGE THE KIDNEYS AS A PROMISING TARGET SPECIFIC THERAPY. Russian Journal of Transplantology and Artificial Organs. 2015;17(1):147-156. (In Russ.) https://doi.org/10.15825/1995-1191-2015-1-147-156

Просмотров: 2138


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1995-1191 (Print)
ISSN 2412-6160 (Online)