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Objective: to conduct a pilot study of the eff ect of bioprosthetic heart valve leafl et calcifi cation on biomechanics 
and to identify the “stress in the material – dysfunction” relationship. Materials and methods. The study’s focus 
was on two commercially available UniLine bioprosthetic mitral valves sized 26 and 30 (NeoCor, Russia). The 
samples were subjected to microcomputer tomographic scanning in order to reconstruct calcium volumes. The 
resulting 3D models were correlated with prostheses of corresponding sizes and projected to the volume of the 
locking element in the Abaqus/CAE engineering analysis software (Dassault Systemes, France). Results. According 
to numerical modeling, the maximum principal stresses increased signifi cantly to 90.8 MPa in the samples, the 
opening decreased qualitatively, and impact on the prosthetic frame increased. Comparison of stress diagrams of 
numerical simulation with samples demonstrates the relationship between peak amplitude and rupture and thinning 
localizations in the fl ap apparatus. Conclusion. The work presented demonstrated the fi ndings of a pilot study 
of the connection between biomechanics in a patient-specifi c calcifi ed mitral prosthetic heart valve UniLine and 
macroscopic characterization of explanted samples. The comparative stage showed that stress values correlate 
with localization of leafl et dysfunction.
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INTRODUCTION
According to various sources, over 9,000 heart valve 

surgeries are performed annually in the Russian Federa-
tion, with bioprosthetic heart valves (BHVs) accounting 
for at least 19% of these procedures [1]. BHVs off er 
several advantages over mechanical valves, including 
the absence of a need for lifelong anticoagulant therapy 
and the ability to more closely replicate native hemo-
dynamics due to the design and materials of the leafl et 
components [2–4]. However, more than 30% of BHVs 
require replacement within 10–15 years due to various 
dysfunctions, such as calcifi cation, pannus formation, 
ruptures, and perforations [5]. This highlights the need to 
investigate the underlying mechanisms [6–8] and deve-
lop preventive strategies [8, 9] for degenerative changes 
in the biological tissues of prosthetic valve leafl ets. The 
main research approaches to addressing bioprosthetic 
valve dysfunction include:
– imaging techniques (X-ray, computed tomography 

(CT), micro-CT) [10–12];
– histological analysis [13–16];
– immunohistochemistry and immunofluorescence 

[16–19];
– blotting and proteomic profi ling [20–22];

– sequencing [23–25];
– scanning electron microscopy [16, 26, 27].

Most of the aforementioned methods are now integra-
ted in contemporary research, enabling a comprehensive 
characterization of valve dysfunction, including tissue 
destruction, cellular and bacterial infi ltration, and protein 
deposition. With the advancement of computer simula-
tion technologies, biomechanical analysis of prosthetic 
heart valves – both at the level of individual components 
and the prosthesis as a whole – has become increasin-
gly feasible [28–33]. A major focus of current research 
is the evaluation of the stress-strain state of the leafl et 
material and the progression of valve dysfunction over 
time [32–35].

Initial studies in valve biomechanics modeled the 
leafl et structure using shell-based approaches, where the 
material’s thickness was a key parameter [28, 34]. More 
recent eff orts have shifted toward volumetric modeling 
[32], which allows for more accurate representation of 
in situ mechanical behavior. Similarly, calcifi c deposits 
can be incorporated either as material properties within 
the computational mesh [28] or explicitly represented as 
three-dimensional bodies on the valve surface [32, 34]. 
However, literature evidence suggests that such degene-
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Fig. 1. UniLine bioprosthetic mitral valve: a, general view; b, comparison of the prosthesis model and calcifi cations recon-
structed from micro-CT; c, description of the assembly components, visualization of applied pressure and interaction of the 
pairs of elements

rative changes may also localize within the thickness of 
the leafl et tissue itself [36–39]. This highlights a notable 
limitation in current modeling approaches – the over-
simplifi ed mathematical representation of the structural 
complexities within the leafl et tissue.

To address the shortcomings identifi ed in previous 
numerical modeling studies of BHV dysfunction, we 
developed a novel approach for conducting in silico ex-
periments. This method was validated through a com-
parative analysis involving both an intact (initial) model 
and a patient-specifi c model of a BHV. Additionally, the 
numerical modeling results were compared against dys-
functions observed in explanted xenopericardial mitral 
prostheses.

MATERIALS AND METHODS
The study focused on two UniLine bioprosthetic mi-

tral valves (NeoCor, Russia) [40, 41], with diameters of 

26 mm and 30 mm (Fig. 1, a), which were electively 
explanted due to dysfunction after 4.3 and 5.3 years of in 
vivo use, respectively. Within four hours of explantation, 
photographic documentation of the dysfunctional regi-
ons was performed, followed by detailed macroscopic 
imaging to facilitate comparison with biomechanical 
simulation outcomes.

Subsequently, both specimens underwent micro-
computed tomography using a previously established 
protocol [27]. The acquired tomographic slices were 
imported into the Mimics medical 3D engineering soft-
ware (Materialise, Belgium), where volumetric models 
of calcifi c lesions (Fig. 1, b) were reconstructed based 
on radiodense regions, as described in earlier methodo-
logies [42].

Subsequently, we developed a computational model 
within the Abaqus engineering analysis environment 
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Fig. 2. Modeling methodology: a, pressure applied to the valve plug; b, location of calcifi cations (blue) in the biomaterial of 
the fl ap apparatus (gray)

(Dassault Systèmes, France), using the Dynamic/Explicit 
solver. The 3D model of the bioprosthesis, which inclu-
ded polypropylene and wire support structures along with 
3 valve cusps (Fig. 1, b), was augmented with volumetric 
representations of calcifi cations (Fig. 2, b). A 3D fi nite 
element mesh was then constructed, comprising C3D8 
hexahedral solid elements for the polypropylene frame 
and leafl et apparatus, and C3D4 tetrahedral elements for 
the wire components fabricated from titanium nickelide. 
The fi nal meshes contained 15,862 and 21,031 elements 
for the 26 mm and 30 mm prostheses, respectively.

The biomechanical performance of the leafl et ap-
paratus, including calcifi ed regions, was assessed by 
simulating 2 complete cardiac cycles at a heart rate of 
70 beats per minute, spanning a total simulation time 
of 0–1.8 seconds. Material properties were assigned in 
accordance with manufacturer specifi cations [43] and 

previously published data [44, 45]. Calcifi ed regions 
were modeled as rigid bodies, following standard para-
meters for calcium deposits [44].

Uniaxial tensile test data for the leafl et material [46] 
were imported into the Abaqus/CAE environment, where 
coeffi  cients were fi tted for a nonlinear constitutive model 
(Table) using the following strain energy function:

,

where W is strain energy density, Ci0 is Rivlin coeffi  cient, 
and I1 is fi rst invariant of Green deformation tensor.

Table
Coeffi  cients of the nonlinear biomaterial 

model
C10, MPa C20, MPa C30, MPa C40, MPa
0.0071 0.5036 1.023 –0.651
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Fig. 3. Results of numerical modeling of the UniLine bioprosthetic valve of 26 mm (top row) and 30 mm (bottom row) dia-
meter in an intact state at a: closure, T = 1.188 sec; b: maximum opening, T = 1.584 sec

Contact between the valve leafl ets was modeled using 
a “hard contact” interaction with a coeffi  cient of friction 
set at 0.2. All components of the prosthesis were integra-
ted into a unifi ed assembly via paired tie-type constraints: 
specifi cally, between the nodes of the polypropylene 
frame and the wire components, as well as between the 
upper wire component and the lower suture edge of the 
leafl et. Boundary conditions enforcing complete fi xati-
on – zero displacement and zero rotation – were applied 
to the lower annular wire component (Fig. 1, b). Hemo-
dynamic loading was simulated by applying physiologi-
cal pressure to the leafl et surface from the left ventricular 
side (Fig. 2, a, Fig. 1, b).

For comparison, UniLine valve models without calci-
fi cation – featuring leafl ets composed of a homogeneous 
xenopericardial material – were also simulated under 
identical conditions. In all modeled cases, the maximum 
principal stress was used as the key quantitative indicator 
to evaluate leafl et biomechanics.

RESULTS
Modeling of prosthetic biomechanics 
with no degenerative changes

At this stage, simulations were performed on BHV 
models in their intact state, without calcifi cation of the 
leafl et apparatus. The results are presented in Fig. 3.

The analysis revealed increased stress concentrations 
at the commissural strut regions, with a uniform stress 
distribution throughout the volume of the polypropylene 
frame and symmetrical loading of the leafl et apparatus 
onto the wire component. During the entire cardiac cyc-
le, peak stress did not exceed 11.5 MPa for the 26 mm 
prosthesis and 16.5 MPa for the 30 mm prosthesis. These 

values remain well below the threshold for irreversible 
deformation of the leafl et material [44, 47].

Modeling considering calcium deposits 
in the leafl et apparatus

The inclusion of leafl et calcifi cation in the computa-
tional model signifi cantly altered the biomechanical be-
havior of the bioprosthesis. Notably, there was a marked 
increase in peak maximum principal stress, accompanied 
by a qualitative reduction in leafl et opening amplitude 
(Fig. 4).

The most pronounced biomechanical changes were 
observed in the 26 mm UniLine bioprosthesis model. 
Peak maximum principal stresses within the calcifi ed re-
gions ranged from 30.5 MPa to 48.8 MPa, predominant-
ly localized at sites of interaction with the wire frame. 
These elevated stress values are attributed to material 
stretching during the valve closure phase, with stress 
amplitudes reducing to an average of 20 MPa during 
valve opening.

Interestingly, larger-volume calcifi c deposits exhibi-
ted lower peak stress magnitudes compared to smaller 
clusters – 30 MPa in the closed state versus 6.3 MPa 
during opening. In addition, both the polypropylene 
base and wireframe elements experienced signifi cantly 
increased loading compared to their intact counterparts.

The UniLine bioprosthesis with a 30 mm diameter, 
due to the greater volume of biomaterial in its leafl et 
structure, exhibited a more uniform stress distribution 
compared to the 26 mm model. However, maximum 
principal stresses in this model remained substantially 
elevated relative to the intact condition, reaching up to 
90.8 MPa during closure and 55.9 MPa in the opening 
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Fig. 4. Results of numerical modeling of the biomechanics of the UniLine bioprosthetic mitral valve with a diameter of 26 and 
30 mm in a: closed state, T = 1.188 sec; b: open state, T = 1.584 sec

phase, particularly in the region of the leafl et’s free edge. 
There were no signifi cant alterations in the stress expe-
rienced by the polypropylene framework component.

Correlation between biomechanical 
simulation and explanted bioprosthesis 
specimens

At this stage, we addressed a key question: to what 
extent do the simulated calcifi cation zones within the 
leafl et apparatus, and the associated localized stress 
concentrations (Fig. 5, b, c), correlate with the structu-
ral dysfunctions observed in the explanted prostheses 
(Fig. 5, a)?

The study reveals irregularities and steep gradients 
in stress magnitude, which correspond to areas of tissue 
thinning (Fig. 5, b, c) and leafl et tears (Fig. 5, c). These 
changes are predominantly localized in the commissural 
regions, suggesting that mechanical stretching plays a 
critical role in the pathogenesis of structural degene-
ration.

One plausible mechanism underlying this dysfunc-
tion is the abrasion and subsequent disruption of the 
surface layer of the leafl et tissue at its attachment to the 
wireframe component. This disruption likely facilitates 
calcium penetration into the locking element.
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Fig. 5. Comparison of excised samples (a) and comparison of dysfunction areas with modeling results of the UniLine biop-
rosthetic valves of diameter 26 mm (b) and 30 mm (c). The corresponding comparison areas are highlighted with translucent 
pointers. The coloring of the diagrams corresponds to the scale of maximum principal stress [0, 2] MPa

DISCUSSION
On one hand, various research groups have demonst-

rated the signifi cant impact of structural alterations on the 
performance of artifi cial heart valve substitutes. Hamid 
et al. (1987) [28] examined how the location of calcium 
deposits and the presence of perforations infl uence the vi-
brational behavior of the leafl et dome. Given the limited 
computational resources available at the time, the authors 
focused on estimating the fundamental natural frequen-
cy – a key parameter in assessing the mechanical stability 
and durability of BHVs. Their fi ndings indicated that a 
central perforation reduced the natural frequency from 
55 Hz (in a native, healthy valve) to 52 Hz. Inclusion of 
calcifi cations increased the frequency to 62 Hz, while 
damage involving all three leafl ets caused a dramatic 
rise to 145 Hz.

With advancements in hardware and computing per-
formance, more sophisticated simulations have become 

possible. In 2016, for instance, researchers presented a 
model simulating the implantation of a balloon-expan-
dable prosthesis into a calcifi ed native valve, using the 
commercial Edwards SAPIEN valve (Edwards Lifesci-
ences Inc., USA) as a reference [34]. The study presents 
detailed stress distribution patterns and analyzes the bio-
mechanical behavior of the leafl et apparatus as infl u-
enced by the implantation technique of the prosthesis. 
The fi ndings demonstrate that stress amplitudes increase 
notably in regions with calcium accumulations, with the 
fi rst principal stress component (σ1) exceeding 0.5 MPa. 
In contrast, areas with an intact (“clean”) surface exhibit 
much lower stress, typically below 0.15 MPa. Further 
advancement of this modeling approach was presented 
by Qin et al. in 2020 [32], who investigated stenotic 
heart valves using patient-specifi c native valve models. 
Their study revealed a strong correlation between stress 
distribution and location of calcifi cations. Stress concent-
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rations were localized at the interface between the leafl et 
dome and the calcifi ed regions. Quantitative analysis 
indicated an average increase in stress amplitudes by 
about 1.4 ± 0.08 times compared to non-calcifi ed models, 
depending on the extent of the lesion.

On the other hand, numerous histological studies in-
volving both animal models and explanted BHVs have 
documented structural deterioration characterized by 
calcium deposits surrounded by a disrupted cellular mat-
rix [36–39]. Microscopic examination of aff ected tissues 
reveals detachment of collagen fi bers from the minera-
lized inclusions, a phenomenon attributed to repetitive 
mechanical impact during the cardiac cycle. This process 
is believed to underlie the development of ruptures and 
perforations in BHVs.

A similar observation was made in this study, where 
regions of tissue thinning and tearing in the excised biop-
rosthetic specimens corresponded with zones of elevated 
mechanical stress. The fi ndings underscore the substan-
tial impact of leafl et calcifi cation on the biomechani-
cal performance of the prosthesis. Specifi cally, calcifi c 
deposits markedly alter the distribution and magnitude 
of maximum principal stresses, thereby impairing the 
leafl et’s ability to reproduce native hemodynamics. The 
two case studies presented here eff ectively illustrate the 
potential relationship between stress concentration and 
valve dysfunction. However, to establish more generaliz-
able conclusions and to validate these fi ndings, a multi-
center study is warranted. Such a study should integrate 
advanced noninvasive imaging and calcium mapping 
techniques for biomechanical modeling, alongside mo-
dern immunophenotyping approaches. The methodology 
presented here demonstrates the feasibility of conducting 
pilot investigations using explanted samples, laying the 
groundwork for larger-scale research initiatives.

CONCLUSIONS
The biomechanical impact of calcifi cation within the 

leafl et apparatus on stress distribution in both the sup-
porting frame and the dome of the cusps was investigated 
using two UniLine bioprosthetic valves (26 mm and 
30 mm in diameter) explanted due to structural degene-
ration. The analysis revealed a marked increase in peak 
stress amplitudes – reaching up to 90.8 MPa – in regions 
containing calcium deposits. These elevated stress con-
centrations negatively aff ected the surrounding tissue 
integrity, contributing to leafl et thinning and rupture. 
Furthermore, in the 26 mm UniLine valve, structural 
modeling that incorporated calcifi cations demonstrated 

increased mechanical loading on both the wire support 
elements and the polypropylene frame component.
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