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Multipotent mesenchymal stem cells (MMSCs) are known to be excellent therapeutic agents. Apart from their 
ability to differentiate into various cell types, and thus participate in the repair of injured tissues and organs, they 
can influence the regeneration process through secretion of paracrine factors. Thus, MMSC therapy represents a 
special type of medical intervention that has both a systemic range of therapeutic efficacy and local activity on 
individual sites of an organ. Over the past decades, MMSC therapy has continuously been in a cautious transiti-
on from research development to clinically approved therapies. Clinical trial data has shown that this therapy is 
rarely associated with severe adverse events, is well tolerated and quite safe in the short-term period. However, it 
has a number of limitations for use, mainly due to the risk of malignant transformation. The success of stem cell 
transplantation in the treatment of various diseases has been confirmed both in preclinical studies and in clinical 
practice. The main issues that arise when assessing the therapeutic efficacy of MMSC-associated therapy are the 
type of cells (adipogenic, bone marrow, etc.), delivery route, number of cells injected, and the optimal number of 
injections. There is a growing body of experimental and clinical evidence suggesting that both an adequate deli-
very route and an adequate dose can increase the likelihood of success of MMSC-associated. Each cell delivery 
route has costs and benefits. However, there is generally contradictory evidence on the comparative efficacy of 
different cell delivery routes. The optimal dose of transplanted cells is also debated, as high MMSC doses may 
increase the risks of complications and may not have the proper effect both when administered systemically and 
locally. These aspects require further systematization of available data to maximize the effect of cell therapy by 
selecting the safest and most appropriate approaches.
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inTrODucTiOn
Modern breakthroughs in biotechnology, molecu-

lar and cellular biology have made stem cells one of 
the means for treating numerous diseases. Multipotent 
mesenchymal stem cells (MMSCs) have three main the-
rapeutic effects: they differentiate and replace damaged 
tissue cells, they produce bioactive molecules, and they 
engage in intercellular communication and interact with 
immune cells [1–3].

MMSC-based therapy is generally considered a 
safe procedure with some limitations. The main risks 
associated with MMSC use are their possible oncoge-
nicity (transformation into tumors, stimulation of tumor 
growth) [4, 5] and induction of severe pro-inflammatory 
processes [4] and fibrosis (transformation into myofibro-
blasts) [4, 6, 7]. Many studies have proposed algorithms 
to improve engraftment and differentiation of transplan-
ted cells. While some strategies focus on increasing cell 
resistance to the microenvironment in recipient tissues, 
others try to increase cell survival after transplantation. 
These strategies can range from simple modification of 
culture conditions, known as cell preconditioning, to 

genetic modification of cells to avoid cellular senescence 
[8]. An essential element in improving the efficacy of 
cell therapy and reducing the risk of adverse events is 
the search for optimal delivery routes and doses for MM-
SCs. Despite many preclinical and clinical studies, the 
safety and efficacy of MMSC-related therapies remain 
problematic for clinical application [9, 10].

The aim of this work is to conduct an informational 
and analytical study of experimental and clinical data 
on the efficacy of various stem cell delivery routes and 
doses as a means of therapy for various diseases.

reSulTS anD DiScuSSiOn
MMSCs are typically administered intravenously or 

intra-arterially to achieve systemic effects on the body. 
When administered systemically, they can migrate direct-
ly (homing) to the site of injury in response to chemokine 
and cytokine secretions [11]. Although the exact mecha-
nism of how MMSC home to sites of injury has not been 
fully understood, it is known that it is a multistep process 
in which chemotactic factors play a significant role [8]. 
Chemoattraction of MMSCs to the target tissue seems 
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to be mainly mediated by stromal factor SDF-1/CXCR4 
axis, but monocyte chemoattractant protein/CCR2 and 
hepatocyte protein as well as cytokines such as TGF-β1, 
IL-1β, TNF-α or G-CSF may also be involved in MMSC 
migration [12–14]. It is obvious that intravascular ad-
ministration is the least invasive delivery route and, 
therefore, the most preferable from a clinical standpoint. 
However, this route has significant drawbacks. The major 
one is that a large number of injected cells can linger in 
the capillary network of lungs (first passage effect) and 
other organs, such as liver and kidneys. Considering that 
during transmigration, MMSCs should traverse memb-
ranes between vascular endothelial cells and the target 
tissue, it is obvious that delivering cells to target tissues 
through systemic infusion in the most efficient manner 
is rather difficult. At the same time, MMSCs can form 
microemboli, which create major consequences for or-
gan function, given that the estimated cell diameter is 
20–30 μm [8, 15]. There are serious concerns about the 
safety of this delivery method because studies on mice 
models have shown that in the intra-arterial delivery 
route, micro-occlusions are created, whose number was 
directly correlated with cell count [16]. Following in-
travenous injection, the presence of MMSCs or their 
detritus in the pulmonary capillary network is not just 
a temporary delay – macrophage phagocytosis occurs 
there, and the MMSC detritus is then further carried 
with blood to other organs [17]. One way to improve cell 
diffusion homing is the preconditioning of target tissues. 
For example, several studies have shown that adminis-
tration of a number of hormones, chemokines, growth 
factors, and enzymes in experimental animals, as well 
as exposure to physical factors (ultrasound, irradiation), 
enhances MMSC migration to the injury site [8].

It should be noted that the injection procedure may 
be complicated by resuspension of cells in solutions that 
have low osmotic pressure, since mechanical stress can 
destroy cell membranes and lead to a significant propor-
tion of the cell population dying [18].

It is established that the half-life of MMSCs after 
systemic administration is about 12 hours. However, 
as noted earlier, most of the cells are retained in the 
lungs, where they are utilized or, from where they mig-
rate within 24 hours [2, 6, 8, 19]. After cells are injected 
directly into tissues against the background of venous 
blockade, detritus enters the bloodstream much later in 
smaller amounts. The main part of implanted MMSCs 
is found in other organs and tissues (liver, spleen, etc.) 
within 7 days [2, 20]. There is evidence that MMSCs 
can survive for 30 days after subcutaneous implantation 
[2, 21], but after that, they are undetectable in the liver, 
kidney and spleen [17]. After intravenous injection, cells 
can be detected in the lungs for 150 days [20].

Administration of MMSCs by surgical implantation 
or transendocardial injection has resulted in the reten-
tion of only 16% and 11% of MMSCs in the myocardi-

um, respectively [5]. Intracoronary infusion also caused 
retention of 11% of MMSCs. Overall, approximately 
0.1–2.7% of injected stem cells actually reach the tar-
get tissues [22]. Other implanted MMSCs mainly exert 
remote effects on regenerative processes via cytokines, 
exosomes and microvesicles, and exhibit mainly anti-
inflammatory, immunomodulatory and anti-apoptotic 
effects [23]. It should be mentioned that less than 1% 
of cells are detected in the target organ in both animal 
research and some clinical trials using MMSCs for the 
therapy of osteogenesis imperfecta [15].

There are reports indicating that MMSCs, when de-
livered locally, mobilize progenitor cells to the injury 
site, thereby enhancing regenerative activity [5, 20, 21]. 
In doing so, they improve wound healing and skin graft 
survival. However, experimental studies have shown that 
MMSCs do not stay long in the injection site – most of 
them migrate into the surrounding tissues within 1 hour 
and are no longer detected in the injection site after 
2 days [2, 21].

In a comparative study of three different MMSC de-
livery routes (intraperitoneal, intravenous and anal) in 
a mouse model of colitis, intraperitoneal delivery was 
shown to provide a higher MMSC content in organs 
and faster recovery of experimental animals [15]. The 
efficacy of therapy was evaluated by histological index, 
total body weight of animals and their survival rate.

Distribution and engraftment of MMSCs in organs 
were analyzed and quantified through isolation of the 
cells from green fluorescent protein (GFP+), as well as 
using near-infrared fluorescence imaging. There is evi-
dence that intraperitoneally injected MMSCs aggregate 
with macrophages and lymphocytes in the abdominal ca-
vity and secrete TSG-6 (tumor necrosis factor-inducible 
gene 6 protein), which is likely the main anti-inflamm-
atory mechanism of MMSCs. Increased serum TSG-6 
level was detected after MMSC transplantation, with 
the highest levels detected after intraperitoneal delivery.

It should be noted that the abdominal cavity con-
tains many immune cells that can become components of 
MMSC aggregates. Such close intercellular cross-linking 
between MMSCs and immune cells may be another fac-
tor contributing to improved therapeutic effects [15]. 
It has also been observed that intraperitoneal injection 
provided better mucosal repair and higher cell engraft-
ment in inflamed colon.

Intraperitoneal injection of MMSCs had a positive 
effect on recovery of mice with experimental spinal cord 
compression injury (SCI) [24]. The evaluation criterion 
was the effect of MMSC transplantation on white matter 
preservation. It was shown that experimental groups of 
animals that received MMSCs at a dose of 8 × 105 cells/
mouse had a greater number of preserved fibers. In addi-
tion, these groups were characterized by higher levels of 
trophic factors (brain-derived neurotrophic factor, nerve 
growth factor, neurotrophin-3 and neurotrophin-4) in the 
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spinal cord, which improved motor activity. So, intrape-
ritoneal or intravenous injections of MMSCs promoted 
favorable outcomes as a treatment for SCI without a 
significant statistical difference between the two. This 
supports the idea that these cells do not replace damaged 
spinal cord cells but act through local paracrine effects.

F. Yousefi et al. (2013) showed that intraperitoneal 
injection of MMSCs can reduce the number of inflamm-
atory aggressor cells in the brain and improve clinical 
parameters in mice with experimental autoimmune en-
cephalomyelitis [25].

There is evidence that intraperitoneal injection of 
MMSCs can suppress peritoneal inflammation by resto-
ring the mesothelial layer and reducing complement ac-
tivation in fungal or yeast peritonitis in rats; it almost 
completely prevents experimental autoimmune uveitis 
in mice by suppressing Th1/Th7 immune responses, pro-
tecting the retina against immune-mediated injury [24].

Wang et al. (2016) showed that the best outcomes in 
the treatment of experimental colitis were achieved by 
intraperitoneal transplantation of MMSCs [15]. It was 
found that GFP+ MMSCs migrated into inflamed colon 
and even traveled through the entire intestinal wall, re-
aching the luminal side. This finding is consistent with 
the results that show MMSCs injected intraperitoneally 
migrate and take root in an inflammatory colon [26]. 
Although the precise processes underlying this pheno-
menon are still unknown, it can be hypothesized that 
cytokines are involved in the process. It is known that 
genetic modification of MMSCs to increase CXCR4 
expression enhances cell migration into the intestine in 
radiation enteritis, and consequently, improves condition. 
Experimental studies by Yang et al. (2019) showed that 
a single intraperitoneal injection of MMSCs (2 × 106 
cells/mouse) dramatically improved clinical parameters 
of body weight and colon length, as well as ulcer size 
and histologic parameters in mice with colitis compared 
to those without [27].

Nevertheless, in some cases, intravenous injection has 
been found to be more successful than intraperitoneal 
injection [28]. This discrepancy may be due to diffe-
rent types of adipose tissue- and bone marrow-derived 
MMSCs that differ in proliferation rate, differentiation 
ability, cytokine secretome and chemokine receptor ex-
pression, which may affect migration, engraftment and 
even local function [29, 30]. There is evidence that bone 
marrow MMSCs-based therapies demonstrate the high-
est osteogenic potential in bone regeneration compared 
to MMSCs derived from other tissues [8]. Furthermore, 
the therapeutic effects of various MMSC sources and 
delivery methods on lung and cardiovascular injuries 
vary [31]. Therefore, while evaluating study findings 
and making specific therapeutic application choices, it 
is important to consider the biological differences bet-
ween MMSCs and other sources. Meanwhile, there is a 
report that claims that because the immunophenotypes of 

bone marrow and adipose tissue stem cells are more than 
90% identical, it is impossible to determine which stem 
cell source – adipose tissue or bone marrow – will yield 
the best outcomes for cell therapy [9]. Besides, when 
assessing efficacy, it is important to consider that MM-
SCs may exert their therapeutic effects distally through 
modulatory cytokines [32].

Intramuscular injection of MMSCs has been propo-
sed as a better alternative to intravenous administration 
[33]. Braid et al. (2018) report that while cells injec-
ted intravenously were undetectable as early as a few 
days after injection, and cells delivered intraperitoneally 
and subcutaneously were detectable within 3–4 weeks, 
MMSCs injected intramuscularly survived in situ for 
more than 5 months. Allogeneic single intramuscular 
transplantation of umbilical cord-derived MMSCs to 
rats with simulated hind limb ischemia promoted func-
tional and morphological recovery of ischemic skeletal 
muscle tissue [34]. At the same time, the cells injected 
into experimental animals stimulated angiogenesis in 
the injury site.

In general, quite numerous experimental studies have 
shown MMSCs to improve functional recovery in ische-
mic stroke; this is attributed to the ability of MMSCs to 
enhance the endogenous regenerative potential of ner-
vous tissue [35, 36]. This is due to the action of bioacti-
ve substances released by the cells, which activate and 
stimulate other cell types [37]. The choice of an optimal 
delivery route for MMSCs in cerebral ischemia depends 
on the type of central nervous system (CNS) injury (focal 
or multifocal). The peculiarities of focal CNS injury sug-
gest that the most appropriate way may be intracerebral 
cell transplantation directly into the injury site, and in 
case of multiple lesion areas – systemic intravascular or 
endolumbar injection [37].

It has been shown that intraportal and intravenous 
administration of MMSCs in experimental liver cirrhosis 
promotes faster recovery of liver function. Moreover, 
liver weight decreased the most with intraportal injection 
of stem cells [38]. Administration of acridine orange-
labeled MMSCs intravenously, intraperitoneally, into the 
hepatic artery or portal vein at a dose of 4 × 106 cells/kg 
body weight showed a significant increase in cell count 
in the liver after its subtotal resection regardless of the 
injection method [39]. At the same time, intraperitoneal 
delivery was characterized as the least effective.

When correcting diabetes in an experiment, intrave-
nous injection of bone marrow-derived MMSCs statisti-
cally significantly reduced glucose levels in mice of the 
experimental group compared to the control group [40].

It was found that MMSC implantation promotes 
neurological recovery in a rat model of traumatic brain 
injury (TBI) [41]. Intravenous injection of cells into rats 
reduced the number of microglia and other inflammato-
ry cells and production of proinflammatory cytokines. 
It also stimulated the synthesis of anti-inflammatory  
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cytokines leading to inhibition of inflammatory reactions 
caused by TBI [42].

In clinical practice, the multipotent and secretory po-
tential of MMSCs finds application in the field of rege-
nerative medicine for restoration of tissue structures of 
the body that were damaged by injuries or that developed 
pathology (combustiology, traumatology, dentistry, etc.). 
Here, introduction of stem cells in the patient is usually 
done intravenously to provide a systemic effect on the 
patient’s body [2, 23]. Direct comparison of delivery me-
thods is often absent here due to logistical problems [5]. 
An adequate dose of MMSCs administered once has been 
shown to have a positive clinical effect in 3–6 months 
(and beyond). In certain cases, however, a repeat course 
of treatment in 1–2 weeks (4–6 months) is necessary to 
reach the desired therapeutic outcome [2, 43–46].

The experience of intravenous injection of MMSCs 
in patients with chronic heart failure (CHF) against the 
background of ischemic heart disease is presented. It 
was shown that intravenous administration of autologous 
MMSCs at a dose of 50 × 106 cells in combination with 
standard drug therapy improves basic hemodynamic pa-
rameters and reduces the level of biochemical markers of 
CHF [47]. In addition, there is evidence showing the suc-
cessful application of intracoronary and intramyocardial 
delivery routes in the treatment of ischemic conditions 
in clinical practice [48].

To date, 125 clinical trials have been conducted using 
MMSCs in neurologic diseases [31], including the treat-
ment of TBI. Injection of autologous bone marrow-de-
rived MMSCs in patients in the subacute phase of TBI 
improved neurological function in 40% of patients [49, 
50], promoted recovery of consciousness, motor and 
cognitive functions [51]. Intravenous delivery is used for 
TBI therapy, since MMSC delivery via the intracerebral 
route is considered to be the most effective, but also the 
most invasive [31].

The outcomes of clinical trials on cirrhosis therapy 
using MMSCs are contradictory and occasionally in-
consistent with the results of experimental studies [52]. 
Nevertheless, uncontrolled clinical studies have demons-
trated that introduction of autologous MMSCs into the 
hepatic arterial bed through endovascular surgery is safe, 
well tolerated, and provides a positive effect in patients 
with cirrhosis of various etiologies [53].

For the treatment of patients with knee joint con-
ditions, delivery of autologous MMSCs was via intra-
articular injection of cell culture isolated from different 
sources [9, 54]. It was noted that long-term follow-up 
parameters were significantly superior to those in the 
control group receiving conventional treatment [54].

The use of intraperitoneal cell transplantation in cli-
nical practice has significant limitations due to possible 
complications. These complications include catheter in-
fection and mechanical damage to intraperitoneal struc-
tures [15]. At the same time, it should be noted that high 

peritoneal vascularization allows a greater number of 
transplanted cells to simultaneously gain access to the 
lymphatic and circulatory systems, which certainly pro-
motes engraftment in the injury and inflammation sites 
[24]. It is obvious that the trend to expand the use of 
intraperitoneal injections in cell therapy applications will 
increase and will influence the intensification of innova-
tive developments aimed at preventing complications.

Another crucial factor influencing the therapeutic 
efficacy of MMSCs is the number of cells injected. The 
quantity of cells that reach the damage site increases 
with an increase in the initial dose of cells delivered. 
Various MMSC dosages have been found to be effective 
in experimental investigations. Doses from 3 × 105 cells/
mouse to 2 × 106 cells/mouse appear in the protocols of 
experimental studies [15, 24, 25]. Sometimes, to observe 
any effect, larger doses, up to 5 × 106 cells/mouse, are 
used [37, 55]. However, the researchers conclude that 
intravenous injection of MMSCs at a high dose (up to 
1 × 107 cells/mouse) can increase mortality in mice due 
to potential pulmonary embolism.

Usually, MMSC doses in the range of 5 × 105 to 5 × 
106 cells/mouse are used to achieve therapeutic effect in 
experimental rats [55, 56]. At the same time, cell sur-
vival after transplantation into recipient tissue depends 
not only on dose, but also on duration and conditions of 
cultivation, such as presence of serum or oxygen, me-
chanical stress during implantation or cell death due to 
lack of fixation [56, 57]. There is an opinion that regional 
injection (endolumbar, intraperitoneal, intramuscular) 
results in a tenfold decrease in the therapeutic dose of 
cells [2].

A significant challenge lies with translating the ex-
perimental dosage of the cell product for use in clinical 
practice. As mentioned above, the commonly used cell 
dose is 1 × 106 cells/mouse (body weight 30 g), which is 
equivalent to 33 × 106 cells/kg or approximately 2.3 bil-
lion cells for a 70 kg adult [14]. Researchers have sug-
gested that high cell doses may increase the risks of 
complications, including alloimmunization when using 
allogeneic MMSCs, and may not have the proper effect 
when injected both intravenously and topically [2, 22, 
58]. Nonetheless, the concept of “optimal dose” of sys-
temically injected MMSCs in clinical practice does not 
exist yet since there is no clear dose-effect correlation 
[8]. Today, the standard dose is 1–2 million cells per kg 
of weight [2, 58]. Moreover, compared to standard doses, 
5–10 higher doses of cells are used during the cell thera-
py process for newborns – but usually just once [2, 43].

Using autologous MMSCs, experimental and clinical 
simulations were used to examine the efficacy of various 
cell delivery methods in the treatment of Parkinson’s 
disease [59]. When compared to baseline data, an in-
travenous injection of 160,000 cells/kg weight (low 
dose) resulted in a statistically significant decrease in 
motor disorders. At the same time, transnasal injection  
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in a similar dose in patients of the other group had a simi-
lar effect. These findings suggested that while designing 
long-term maintenance therapy for Parkinson’s disease, 
the efficacy of minimally invasive techniques for deli-
vering low-dose MMSCs should be taken into account.

cOncluSiOn
Most preclinical and clinical studies have shown that 

MMSC implantation is effective, safe and well tolerated. 
Analysis of data from scholarly publications indicates 
that there is ongoing research being done to find the 
best cell delivery dosages and routes. It should be noted 
that attempts are now being undertaken to develop the 
option of using exosomes and extracellular vesicles as a 
cell-free means to realize the features of MMSCs, with 
the goal of removing any potential side effects. It is ob-
vious that application of a cellular product in practical 
healthcare requires maximum adaptation to the type of 
disease or injury in terms of the choice of implanta-
ble MMSC doses and their delivery routes given the 
need to ground the therapeutic strategy with a clear and 
thorough understanding of the disease mechanisms. In 
general, research findings and the opinions of different 
authors on this issue are far from being ambiguous and 
sometimes contradictory. As such, a versatile study of 
the therapeutic potential of MMSCs remains pertinent.

The authors declare no conflict of interest.
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