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BiODeGraDaBle SMall-DiaMeTer VaScular GrafT: 
TYPeS Of MODificaTiOn WiTh BiOacTiVe MOleculeS 
anD rGD PePTiDeS
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The need for small-diameter grafts for replacing the damaged area of the blood pool is still very high. These grafts 
are very popular for coronary artery bypass grafting. Polymeric synthetic grafts are an alternative to autografts. A 
promising area of tissue engineering is the creation of a biodegradable graft. It can serve as the basis for de novo 
generation of vascular tissue directly in the patient’s body. Optimization of the polymer composition of products 
has led to improved physicomechanical and biocompatible properties of the products. However, the improvements 
are still far from needed. One of the decisive factors in the reliability of a small-diameter vascular graft is the early 
formation of endothelial lining on its inner surface, which can provide atrombogenic effect and full lumen of the 
future newly formed vessel. To achieve this goal, grafts are modified by incorporating bioactive molecules or 
functionally active peptide sequences into the polymer composition or immobilizing on its inner surface. Peptide 
sequences include cell adhesion site – arginine-glycine-aspartic acid (RGD peptide). This sequence is present 
in most extracellular matrix proteins and has a tropism for integrin receptors of endothelial cells. Many studies 
have shown that imitation of the functional activity of the natural extracellular matrix can promote spontaneous 
endothelization of the inner surface of a vascular graft. Moreover, configuration of the RGD peptide determines 
the survival and differentiation of endothelial cells. The linker through which the peptide is crosslinked to the 
polymer surface determines the bioavailability of the RGD peptide for endothelial cells.
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1. ВacKGrOunD
Cardiovascular diseases (CVDs) remain the main 

cause of mortality and disability for the population of 
most countries in the world [1]. According to WHO sta-
tistics, in 2015 CVDs caused the death of about 17.7 mil-
lion people [2]. While analyzing this problem Mathers 
C.D. and Loncar D. estimated that by 2030 this number 
will be increased by 30% [3]. An unchallenged leader-
ship among CVDs belongs to atherosclerosis, during the 
development of which atheromatous plaque develops 
and increases in the full thickness of the arterial walls 
[2]. This leads to an impairment in the vessel patency 
and consequently deterioration of the vascular supply to 
the tissues [2, 4–8].

In modern cardiovascular surgery during the treat-
ment of the damaged vessel the choice lies between 
angioplasty and replacement by a vascular implant (va-
scular graft). Using the patient’s own arteries and veins 
for implants presents an ideal option, however there are 
certain limitations in their use.

auto-, xeno-, allotransplants
The patient’s own arteries (thoracic and radial) and 

veins (great saphenous) can be used by many indications 
for transplants into the coronary bed [9]. The disadvanta-

ges of this type of transplants include: anatomic features 
of the vessel structure which prohibit its use for plastic 
material; limited number of arteries and veins; possible 
traumatization of both the vessel and the adjoining tis-
sues during extraction; risk of ischemia development at 
the site of material sampling; age-related degeneration 
[10, 11]. At the same time allo- and xenografts are being 
developed. The leading problem related to allografts 
(homografts or transplants obtained from other people) 
and xenografts (transplants obtained from other animals) 
is foreign genetic material. The use of such grafts implies 
a carefully adjusted protocol of devitalization, aseptic 
processing and, if necessary, cryopreservation of the 
samples. Immune rejection, allergic reactions, infection 
process development and calcification – such complica-
tions may be expected in some cases when such implants 
are used [12–14].

artificial transplants
Synthetic vascular grafts can be divided into 2 types: 

biostable and biodegradable. Biostable grafts are made 
from polytetrafluorethylene, polyethylene terephthalate, 
polyurethanes. Such prostheses are successfully used in 
reconstructive surgery for vessels over 6 mm in diameter. 
In case of an impaired vessel with a smaller diameter, 
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the hemodynamics of which is characterized by a lower 
blood velocity, biostable grafts become inapplicable due 
to rapid hyperplasia of the neointima and thrombosis 
[15–17].

Biodegradable polymer vascular grafts are quite at-
tractive. Their main special feature is imitation of the 
extracellular matrix structure with subsequent full repla-
cement of the polymer matrix by the recipient’s newly 
formed vascular tissue. The materials for manufacturing 
of such prostheses may include synthetic polymers, such 
as: polyglycolic acid, polylactic acid, polycaprolactone, 
polyglycerolsebacate, polyhydroxyalcanoates, etc. In or-
der to produce tissue engineered vascular grafts various 
methods are used, such as solvent casting, phase sepa-
ration, levigation from a polymer solution, 3D printing 
and electrospinning [18]. The latter may be considered 
a priority method. The electrospinning method may help 
achieve the stretching of the polymer solution into fi-
bers the diameter of which varies between 10 microns 
to 50 nanometers, with the formation of various-sized 
and highly porous frames [19–21]. Also changing the 
manufacturing regimen and the solution formulation in 
the process of electrospinning enables to produce frames 
consisting of layers with different composition [22].

improving biocompatibility of the synthetic 
material and modification types

Some polylactone type polymers demonstrate satis-
factory mechanical properties, low toxicity and immu-
nogenicity, however their highly hydrophobic nature 
and low surface energy limit the wetting properties of 
the material, adhesion and cell proliferation which are 
required for further tissue remodeling [23, 24]. Using a 
combination of synthetic and natural polymers (collagen, 
chitosan, fibrin, silk fibroin, polyhydroxybutyrate-cova-
lerate etc.) can lead to the improvement of biocompati-
bility for the produced matrix [25–27]. Also the frame 
biocompatibility can be enhanced by means of using 
various polymers in the process of its manufacturing. 
Using a combination of polycaprolactone (PCL) with 
polyhydroxybutyrate-co-valerate (PHBV) demonstrated 
an increase in the biocompatibility of a matrix produced 
from these materials versus a sample made from only 
polycaprolactone [28].

At the stage of in vivo testing serious problems occur 
with biodegradable artificial prostheses: thrombogenesis, 
calcification, incompatibility of the physico-mechanical 
properties and compliance with the native vessel, inflam-
mation process development, insufficient biocompatibi-
lity of the material [29]. Strategies aimed at overcoming 
such problems are focused, inter alia, on developing the 
biofunctional properties of the conduits.

In particular, stimulation of the graft inner surface 
endothelization may facilitate a decrease in the risk of 
thrombogenesis. The process of graft modification envi-

sages including (incorporating into the nano size fibres of 
the polymer or surface immobilization) substances into 
the polymer matrix which promote adhesion retention, 
support the vital activity of the cells required for speedy 
formation of the endothelial lining and other de novo 
tissue formation. Such substances include a number of 
growth factors and chemoattractant molecules [30, 31]. 
At the same time, a significant scientific interest is related 
to surface modification of ready polymer matrixes by 
means of immobilizing functionally active peptides on 
their surfaces which are capable of selective adhesion 
to endothelial cells from the patient’s system blood flow 
[32]. Such peptides include the arginine-glycine-aspartic 
acid (RGD) which is present in most of the extracellular 
matrix proteins [33]. The RGD sequence is one of the key 
ligands for integrins – receptors which are responsible 
for cell adhesion, migration, proliferation, differentiati-
on and survival [34]. One of the key challenges in the 
development of devices with RGD-containing peptides 
is the choice of RGD configuration, as well as the ligand 
or linker by means of which the adhesive peptide will be 
immobilized on the polymer surface.

Currently the possibility of using RGD peptides for 
modification of the surfaces of constructions obtained 
by means of tissue engineering which come into contact 
with blood and require prompt surface endothelization 
is being studied simultaneously in many countries. Re-
search groups carry out independent studies in this area, 
using their own protocols beginning with the synthesis of 
a certain peptide configuration and all the way through to 
a model of in vivo testing for a ready model. Therefore, 
according to existing literature data there is no evidence 
based opinion regarding a preferable configuration for an 
RGD peptide or the structure of a ligand/linker, which 
characterizes this area as under-investigated, and there-
fore quite attractive to be studied in regard to creating 
functionally active devices for the needs of cardiovascu-
lar surgery. The current review covers the main modern 
approaches used in the development of modified bio-
degradable prostheses with an emphasis on describing 
use of surface modification for small diameter vessel 
prostheses by means of RGD peptides.

Vascular endothelium
Vascular endothelium (VE) is a continuous highly 

differentiated monolayer of squamous cells of mesenchy-
mal origin (endotheliocytes) which line the inner surface 
of each integral part of the cardiovascular and lymphatic 
systems [35]. Several distinctive features can be dis-
tinguished which emphasize the priority importance of 
achieving prompt and quality endothelization of the inner 
surface of a polymer vascular prosthesis. First of all, the 
endothelial monolayer is formed by endotheliocytes with 
various phenotypes the ratio of which depends on many 
factors: the amount of pressure in the vessel, the velocity, 
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the share stress force, a pulsing or constant flow, as well 
as peculiar features pertinent to the extracellular matrix 
[36, 37]. In other words, the endothelial lining of a vessel 
is a highly adaptive system which enables the vessels and 
cavities to support functioning under various conditions 
(types and length of the stimuli).

Secondly, the vascular endothelium has morphologi-
cal and functional variations which match their specific 
location in the body [38]. The vascular endothelium pro-
duces a large amount of biologically active substances, 
from an inorganic molecule of NO to complex organic 
structures (C-type endothelial natriuretic peptides) [40, 
41]. Thus, the VE is not only a barrier layer of cells 
between the blood (or lymph) and the subendothelial va-
scular tissues but also an active endocrine ’organ’ which 
takes part in functional self-regulation, regeneration and 
remodeling of the vasculature, in direct metabolism of 
the tissues and organs, in transvascular substance and cell 
migration, for example leukocyte migration, as well as 
influencing the most important stage of the hemostasis 
system’s work – coagulation [42–44]. The important 
contribution of the VE into the normal physiology of the 
body indicates that any disfunction in it may lead to a 
wide range of pathological conditions. The most socially 
significant and debatable ones among these are CVDs, 
sepsis and cancer [45–47]. Therefore, rapid formation 
of the endothelial monolayer on the inner surface of 
a biodegradable polymer prosthesis which replaces an 
impaired section of the vascular bed is a most important 
goal in the creation of biocompatible and functionally 
active vessel replacement devices. The speed and quality 
of the endothelization may determine the consistency of 
the tissue engineered prosthesis itself, its further remo-
deling, as well as the physiology of those tissues and 
organs (or organ systems) in the vascular pool of which 
it is implanted.

2. Main BiOlOGiGallY acTiVe SuBSTanceS 
uSeD fOr The MODificaTiOn Of TiSSue 
enGineereD VaScular PrOSTheSeS 
in OrDer TO acceleraTe The inner 
Surface enDOTheliZaTiOn

Including substances capable to attract endothelial 
cells from the recipient’s systemic blood flow, and to 
provide optimal conditions for their vital activity, into the 
tissue engineered matrix is one of the trends in creating 
biofunctional biodegradable vessel prostheses. Such sub-
stances include bioactive molecules which control poly-
mer frame remodeling processes with a priority to rapid 
and quality endothelization of the inner surface. Much 
attention is devoted to growth factors – signal polypepti-
des which regulate cell survival, migration, proliferation 
and differentiation [48]. Due to the chemical instability 
of growth factors one of the common methods used to 
include them into the polymer matrix is incorporation. 

For example, in the process of two-phase electrospinning 
the biomolecules are enclosed into the polymer fibers 
which form the device, which ensures their structural 
integrity and prolonged release related to gradual degra-
dation of the polymer fibre [49–51]. Another successful 
method which enables to ensure structural stability and 
increased lifespan for the molecules is the adsorption 
of growth factors to fibronectin, fibrin, gelatin, heparin, 
which in their turn are immobilized to the matrix surface. 
Speaking about tissue assimilation and remodeling at the 
polymer tube frame, the following fact should be taken 
into account: supporting vital activity for adhesive cells 
and future tissues is possible in case of availability of 
an extensive and branched vasculature [52]. Therefore 
the Vasсular Endothelial Growth Factor (VEGF) as a 
modification component is quite interesting and indeed 
of prior importance, as it facilitates endothelization of 
the inner surface of the grafts as well as stimulating va-
scular network formation and growth on the transplant 
and capillary genesis throughout its thickness.

The VEGF molecule can ensure migration of already 
mature forms of the endothelial cells towards the poly-
mer matrix from anastomosis zones and attract endothe-
lial cell precursors from the blood [53]. The VEGF-A 
165 isoform is most active in angiogenesis stimulation 
(prevailing numerically), being bound to the VEGFR2 
receptor on the endothelial cell it provides most signifi-
cant functional signals [54–56]. V.V. Sevostianova et al. 
(2018) published data describing the character of inner 
surface endothelization for polycaprolactone grafts with 
incorporated VEGF which have been implanted into the 
abdominal part of the aorta to laboratory rats for 1, 3, 
6 months. Thus, PCL/VEGF grafts demonstrated better 
short-term (75% vs 50%) and long-term (100% vs 75%) 
permeability as compared to non-modified analogues. 
Due to VEGF use on the inner surface of the transplants 
already one month after implantation a large number 
of immature CD31+ CD34+ endothelial cells has been 
identified which during follow-up by the time of the im-
plantation time into the abdominal part of the rats’ aorta 
formed a monolayer with a prevalence of mature cells 
with CD31+ CD34– phenotype. Non-modified PCL grafts 
were not so successful [57]. Similar results have been 
obtained with co-polymer PHBV/PCL grafts modified 
by the same growth factor [58]. Research carried out by 
Henry, J.J.D. et al. (2017) showed that after implantation 
of vascular grafts from polylactic acid (PLLA – poly-l-
lactide acid) into the carotid artery of laboratory rats and 
PLLA/PCL variation modified by VEGF in each case 
already two weeks later active angiogenesis has been 
noted: on the inner surface of 82% of the samples endo-
thelial cells have been identified, while in non-modified 
graft this rate was 2 times lower [59]. Other bioactive 
factors make a less pronounced contribution to the en-
dothelization process, acting more indirectly.
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The basic fibroblast growth factor (bFGF) has an im-
pact on many physiological and pathological processes: 
cell survival, differentiation, proliferation, angiogenesis, 
adhesion, as well as skeletogenesis and wound healing 
[60, 61]. BFGF angiogenesis is based on mature endo-
thelial cell stimulation to proliferation and organization 
into tube structures [62, 63]. Both in in vitro and in in 
vivo experiments successful EC adhesion and viability 
results have been obtained. During cultivation of human 
microvascular endothelial cells (HMECs) and peripheral 
blood canine endothelial progenitor cells (CEPC) on the 
surface of a decellularized carotid artery of a pig covered 
with bFGF under conditions of blood flow imitation, 
more successful EC retention has been demonstrated 
on bFGF-modified samples (60%) [64]. Owing to the 
procedure of venous transplant wrapping in a bFGF-
containing hydrogel sheet their structural and physiolo-
gical properties have been improved, EC survival during 
implantation to laboratory mice has been improved vs. 
non-modified veins [65].

Many other growth factors and chemoattractant mo-
lecules are also used as agents for artificial polymer vas-
cular graft modification. In particular the platelet-derived 
growth factor (PDGF) is interesting due to its partici-
pation during the embryonal and postnatal periods in 
differentiation, proliferation, migration of mesenchymal 
origin cells, in the formation and stabilization of blood 
vessels, in tissue regeneration [66–68]. The transforming 
growth factor beta (TGF-beta) when secreted into the 
extracellular environment by various cell types performs 
a number of functions, including cell proliferation and 
differentiation control as well as angiogenesis stimula-
tion [69].

The stromal cell-derived factor – 1 alpha (SDF-1α) 
is a chemoattractant molecule which performs a number 
of important functions both in the embryonal period and 
in an adult body. SDF-1α controls migration of various 
cell types, attracts and takes part in the proliferation of 
endothelial progenitor cells from the bone marrow [70, 
71]. Implantation of grafts made from polyester with 
SDF-1α into the carotid artery of sheep has shown stem 
cell attraction, improved endothelization, decreased in-
timal hyperplasia and thrombosis frequency [73].

During modification of low diameter synthetic vessel 
substitution devices several types of biologically active 
molecules can also be used to launch various effects 
stimulating and supporting endothelization, facilitating 
remodeling of vessel tissues with the formation of all 
the appropriate tissue layers found in a true vessel. Thus, 
layered incorporation of the VEGF, bFGF and SDF-
1α complex into a biodegradable vessel graft made of 
PHBV/PCL promoted 100% permeability and early full 
graft endothelization in in vivo experiments vs samples 
with each factor incorporated separately [73]. It has been 
proved that bFGF and SDF-1α molecules supported sus-
tainable VEGF-induced formation of quality endothelial 

lining on the inner surface of the vessel prostheses. High 
primary permeability during 12-month implantation to 
rats provided for the formation of vascular tissues in the 
place of the biodegradable matrix with simultaneous 
calcification intensity decrease and no immune rejection 
signs [74].

3. Surface rDG PePTiDe MODificaTiOn
A large number of methods aimed at the modification 

of the vessel substituting inner surface are being develo-
ped in order to get a functionally active endothelial mo-
nolayer. In vitro graft endothelization by autologous cells 
is an effective, however rather controversial method. In 
this case the time for producing a cell-colonized vessel 
graft and its cost are increased [75]. Such a graft can not 
be used in emergency cardiovascular surgery. In emer-
gency cases a cell-less biodegradable graft which forms 
a microenvironment to attract cells that take part in the 
endothelization process can be a more successful option. 
Another area actively developed in tissue engineering 
is surface modification of polymer vascular prostheses 
which implies creation of a biomimetic surface the ar-
chitectonics and functionality of which would be similar 
to that of the natural extracellular matrix.

The extracellular matrix and integrin 
receptors

The extracellular matrix (ECM) consists of a com-
pound protein complex of various structure and configu-
ration which is characterized by specificity of the ratio 
of the main glycoprotein – collagen – to other glycopro-
teins, proteoglycans and hyaluronic acid for each tissue 
type [76]. The main functions of the ECM are: forming 
borders between cell groups, creating a media for cell 
migration; regulating cell behaviour by means of growth 
factors and proteins containing cell adhesion sites. The 
combination of these functions also enables the ECM to 
support structural hierarchy in tissue organization [77]. 
Interaction between the ECM and the cells is carried out 
via integrin mediated cell adhesion. An integrin receptor 
is a heterodimer consisting of α- and β-subunits. Human 
cells have altogether 18 α-subunits and 8 β-subunits in 
different variations which represent 24 types of trans-
membrane receptors. Integrin reorganizes signals from 
the ligand to the cell; also reverse transmission of the 
intercellular signals towards the ligand takes place which 
in turn regulates the correlation affinity and the force of 
interaction [78–80]. As a result a large number of signal 
molecular cascades are activated which lead to structu-
ral and physiological changes in the cells responsible 
for supporting focused adhesion, proliferation, indirect 
cell cycle regulation [81]. In the process of fibrin mat-
rix inner surface endothelization in the vessel replacing 
device both precursor cells and mature endothelial cells 
take part which circulate in the blood flow and mig-
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rate from the anastomosis ends with the native vessel 
[82–84]. ECs express 13 types of integrins; among these 
the ones taking most active part in the process of adhe-
sion with subsequent endothelization are the β1, αvβ3 и 
αvβ5 subfamilies [85]. An emphasis on protein ligands 
conjugated with certain integrin receptors and their cell 
adhesion sites lays the basis for the development of inner 
surface modification of tissue engineered vessel repla-
cement devices made of porous artificial material and 
for the stimulation of accelerated endothelization. For 
β1-integrins the ligands will be collagen and laminin, 
and the binding site – the Asp-Gly-Glu-Ala (DGEA) 
peptide sequence; additional recognition sites for laminin 
are Tyr-Ile-Gly-Ser-Arg (YIGSR), Arg-Gly-Asp (RGD) 
and several others. The αvβ3 and αvβ5 integrins possess 
an affinity to fibronectin, von Willebrand factor, fibulin, 
osteopontin, vitronectin with RGD adhesive peptide se-
quence [86–88]. The RGD-peptide may be considered 
a general integrin binding motive. RGD’s representative 
versatility on the ECM makes it a maximally eligible 
factor for surface modification of biodegradable polymer 
matrixes. Research is being carried out to study peptide 
sequences both obtained in the course of extraction from 
natural materials and artificially synthesized. The latter 
have certain advantages: the risk of immune response is 
decreased as well as infections related to an insufficient 
degree of material cleansing. Comparison of the func-
tional properties of natural RGD-containing proteins 
and their artificial analogs has shown that the latter are 
more efficient [89].

Artificial synthesis enables to obtain various confi-
gurations of the RGD peptides which possess various 
potential of interacting with cells. The overall number 
of studied configurations can be divided into 2 groups: 
non-cyclic (linear) and cyclic forms. It has been shown 
that cyclic RGD peptides are the ones to be bound to 
αvβ3 integrins [90]. The ligand may be either of natural 
origin or synthesized (linker). Control of the specific 
interactions between cell receptors and ECM ligands is 
a critical aspect in tissue engineering as it ensures the 
effectiveness of cellular migration and adhesion [91]. 
It has been shown that it is the length of the ligand that 
ensures bioavailability of the RGD peptides for integrin 
mediated interaction with the cell and further regulation 
of the adhesion force and migration speed [92]. The num-
ber of ’polymer composition – linker – RGD peptide’ 
is quite large, therefore currently the issue regarding 
priority RGD peptide modification of polymer vascular 
prostheses is open.

rGD configuration types  
and ligands/markers conjugated with them

Synthesized GRGDDSP peptides immobilized on a 
PCL graft by means of water resistant bioadhesive mus-
sel fp-151 protein (MAP) has shown its efficiency when 

implanted into rabbits’ carotid arteries. Such a coating 
improved endothelization of the MAP-RGD graft surface 
by means of active attraction of mature and progenitor 
endothelial cells which ensured monthly patency in near-
ly 70% of all cases [93]. An emphasis has been made in 
this work on the MAP linker: an artificially synthesized 
form produced from natural components turned out to 
be more biocompatible and quite simple in obtaining as 
compared to existing commercial samples [94].

A study performed by Cutiongco M.F.A. et al. (2015) 
included in vitro and in vivo comparison of the cyclic 
cRGD peptide form (CRRGDWLC) and the non-cyclic 
RGDS peptide cross-linked by means of PVA grafts 
(рoly(vinyl alcohol) hydrogel) with the help of a lin-
ker produced by interphase polyelectrolyte complexing 
(IPC): fibre formation from chitosan and alginate. In the 
course of this study fibronectin and heparin performed 
the role of alternative modifying agents [95]. Viability 
of human umbilical vein endothelial cells (HUVEC) on 
polymer films with fibronectin coating, RGDS and cRGD 
showed a positive tendency towards improvement of cel-
lular survival as compared to non-modified analogues. At 
the same time, modification with heparin was considered 
ineffective due to decreased adhesion and endothelial 
cell proliferation. In the course of haemocompatibility 
assessment samples modified by fibronectin were also 
excluded due to platelet activation. Polymer films with 
non-cyclic RGDS demonstrated platelet activation to a 
lesser degree than films with fibronectin. Samples with 
cyclic cRGD activated individual platelets that were only 
partly attached by pseudopodia, which indicated low 
platelet activation and presented this modification as 
most fitting for further in vivo testing [96].

In one of the studies by Samantha Noel et al. (2015) 
synthesized peptide sequences CGGRGD, CGGYIGSR 
and CGGREDV were studied which were immobilized 
via a polyethyleneglycol linker (PEG) on the surface of 
polyethylene terephthalate with the purpose of increasing 
the athrombogenic properties of the artificial material. 
The effectiveness of modified polymer film versions was 
evaluated by adhesion indicators as well as by HUVEC 
cell culture viability. The grafted REDV peptide did not 
improve endothelial cell adhesion while RDG peptide 
and YIGSR peptide significantly increased the metabolic 
activity of the cell culture. The authors noted that co-
immobilization of RGD and YIGSR peptides improved 
HUVEC metabolic activity even further, which indicated 
synergism between two sequences [97]. Choi W.S. et 
al. (2016) performed surface modification of a polymer 
frame produced from a combination of polyurethane 
(PU) and elastomer (Pellethane) with heparin, adhesive 
GRGDS and YIGSR peptides via a PEG linker. In vitro 
experiment showed that the effect of RGD peptide on 
HUVEC cell culture adhesion and proliferation was so-
mewhat higher than for YIGSR peptide or for the sample 
with co-immobilization of both peptides. Implantation 
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of non-modified grafts as well as those modified by he-
parin and by two adhesive peptides was performed for 
rabbits for a period of up to 2 months. The results of the 
experiment showed 71.4% patency in modified samples 
vs 46.2% in non-modified analogues [98].

In one of the works performed by the research group 
headed by Antonova L.V. (2015) and devoted to bio-
degradable graft modification by adhesive peptides the 
GRGDG configuration has been studied [99]. Surface 
modification was compared to PHBV/PCL grafts with 
incorporated VEGF. According to the results of short 
term and long term implantation of grafts with RGD or 
VEGF into the abdominal aorta of laboratory rats the 
authors noted no significant differences in cellularity 
evolution during the formation of endothelial monolayer 
which was functionally more mature as compared to non-
modified grafts. Both types of modification proved to be 
sufficiently effective [100]. Further on, in 2019 the same 
research group presented the results of in vitro and in 
vivo studies where the results of modification by various 
configurations of RGD peptides and linkers immobilized 
on the surface of PHBV/PCL grafts were compared. The 
studied adhesive peptide sequences were as follows: non-
cyclic RGDK and AhRGD, cyclic c[RGDFK] peptide. 
Cross-linking of the peptides with polymer materials 
was performed via linkers of different length and che-
mical content: short 1,6-hexamethylenediamine and long 
4,7,10-trioxa-1,13-tridecanediamine. Same as in the stu-
dy performed by Cutiongco M.F.A. et al. (2015) the most 
optimal configuration was the cyclic form c[RGDFK], 
however the length of the linker group made a signifi-
cant impact on the bioavailability of the molecule both 
in vitro and in vivo. Colony-forming human endothelial 
cell adhesion on graft samples modified by c[RGDFK] 
via the 4,7,10-trioxa-1,13-tridecanediamine linker excee-
ded that demonstrated in comparison with other RGD-
modified samples. Also it has been possible to achieve 
a better endothelial monolayer on the inner surface of 
the grafts implanted to laboratory rats, as well as 100% 
graft permeability at different times after implantation 
(1 and 3 months). At the same time hemocompatible 
properties of such material were higher in comparison 
with samples modified by the same cyclic RGD peptide 
but cross-linked with the polymer surface by a short 
linker – 1,6-hexamethylenediamine [101].

cOncluSiOn
A lot of attention is devoted to growth factors and ad-

hesive peptide sequences, in particular RGD, in various 
areas of development based on selective binding to target 
cells. Biologically active molecules – VEGF, bFGF and 
some others integrated into the vascular prosthesis ma-
terial, have shown to be efficient in in vitro and in vivo 
studies. Use of several growth factors for the modifica-
tion of biodegradable vessel replacement items may lead 
to more optimal neogenesis of true blood vessel tissues 

at the implant site. Affinity to endothelial cells makes 
RGD peptides and their configurations ideal agents for 
surface modification of tissue engineering constructions 
which contact with blood and require prompt surface en-
dothelization. The speed of spontaneous endothelization 
which should be inititated during implantation of a small 
diameter artificial blood vessel will depend directly on 
the RGD peptide bioavailability which may be ensured 
by means of a linker of a certain length.
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